3'-Phosphoadenosine-5'-phosphosulfate

Source: Wikipedia, the free encyclopedia.
3′-Phosphoadenosine-5′-phosphosulfate
Names
IUPAC name
3′-O-Phosphono-5′-adenylyl hydrogen sulfate
Systematic IUPAC name
[(2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methyl hydrogen (sulfooxy)phosphonate
Other names
PAPS
3′-Phosphoadenylyl sulfate
Phosphoadenosine phosphosulfate
3′-Phospho-5′-adenylyl sulfate
Identifiers
3D model (
JSmol
)
Abbreviations PAPS
ChEBI
ChemSpider
ECHA InfoCard
100.222.927 Edit this at Wikidata
EC Number
  • 694-699-5
IUPHAR/BPS
KEGG
UNII
  • InChI=1S/C10H15N5O13P2S/c11-8-5-9(13-2-12-8)15(3-14-5)10-6(16)7(27-29(17,18)19)4(26-10)1-25-30(20,21)28-31(22,23)24/h2-4,6-7,10,16H,1H2,(H,20,21)(H2,11,12,13)(H2,17,18,19)(H,22,23,24)/t4-,6-,7-,10-/m1/s1 checkY
    Key: GACDQMDRPRGCTN-KQYNXXCUSA-N checkY
  • InChI=1/C10H15N5O13P2S/c11-8-5-9(13-2-12-8)15(3-14-5)10-6(16)7(27-29(17,18)19)4(26-10)1-25-30(20,21)28-31(22,23)24/h2-4,6-7,10,16H,1H2,(H,20,21)(H2,11,12,13)(H2,17,18,19)(H,22,23,24)/t4-,6-,7-,10-/m1/s1
    Key: GACDQMDRPRGCTN-KQYNXXCUBK
  • C1=NC2=C(C(=N1)N)N=CN2[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(O)OS(=O)(=O)O)OP(=O)(O)O)O
Properties
C10H15N5O13P2S
Molar mass 507.266
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

3′-Phosphoadenosine-5′-phosphosulfate (PAPS) is a derivative of

coenzyme in sulfotransferase reactions and hence part of sulfation pathways.[1] It is endogenously synthesized by organisms via the phosphorylation of adenosine 5′-phosphosulfate (APS), an intermediary metabolite.[2] In humans such reaction is performed by bifunctional 3′-phosphoadenosine 5′-phosphosulfate synthases (PAPSS1 and PAPSS2) using ATP as the phosphate donor.[3][4]

Formation and reduction

APS and PAPS are intermediates in the reduction of sulfate to

ATP sulfurylase
:

SO42− + ATP ⇌ APS + PPi

The conversion of APS to PAPS is catalysed by APS kinase:

APS + ATP ⇌ PAPS + ADP
Structure of adenosine 5′-phosphosulfate (APS).

Reduction of APS leads to sulfite, which is further reduced to

sulfate ester, leads also to hydrogen sulfide. But in this case, the product is used in biosynthesis, e.g. for the production of cysteine. The latter process is called assimilatory sulfate reduction because the sulfate sulfur is assimilated.[5]

References