32 (number)

Source: Wikipedia, the free encyclopedia.
← 31 32 33 →
Cardinalthirty-two
Ordinal32nd
(thirty-second)
Factorization25
Divisors1, 2, 4, 8, 16, 32
Greek numeralΛΒ´
Roman numeralXXXII
Binary1000002
Ternary10123
Senary526
Octal408
Duodecimal2812
Hexadecimal2016

32 (thirty-two) is the natural number following 31 and preceding 33.

Mathematics

32 is the fifth power of two (), making it the first non-unitary fifth-power of the form where is prime. 32 is the totient summatory function over the first 10 integers,[1] and the smallest number with exactly 7 solutions for .

The aliquot sum of a power of two is always one less than the number itself, therefore the aliquot sum of 32 is 31.[2]

The product between neighbor numbers of

decimal, is equal to the sum of the first 32 integers
: .[3][a]

32 is also a Leyland number expressible in the form , where:[5][b]

The eleventh Mersenne number is the first to have a prime

exponent (11) that does not yield a Mersenne prime, equal to:[7][c]

Pascal's Triangle represent the thirty-two divisors that belong to the largest constructible polygon
.

The product of the five known

Fermat primes is equal to the number of sides of the largest regular constructible polygon with a straightedge and compass that has an odd number of sides, with a total of sides
numbering

The first 32 rows of Pascal's triangle read as single binary numbers represent the 32 divisors that belong to this number, which is also the number of sides of all odd-sided constructible polygons with simple tools alone (if the monogon is also included).[10]

There are also a total of 32 uniform colorings to the 11 regular and semiregular tilings.[11]

There are 32 three-dimensional crystallographic point groups[12] and 32 five-dimensional crystal families,[13] and the maximum determinant in a 7 by 7 matrix of only zeroes and ones is 32.[14] In sixteen dimensions, the sedenions generate a non-commutative loop of

order 32,[15] and in thirty-two dimensions, there are at least 1,160,000,000 even unimodular lattices (of determinants 1 or −1);[16] which is a marked increase from the twenty-four such Niemeier
lattices that exists in twenty-four dimensions, or the single lattice in eight dimensions (these lattices only exist for dimensions ). Furthermore, the 32nd dimension is the first dimension that holds non-critical even unimodular lattices that do not interact with a Gaussian potential function of the form of root and .[17]

32 is the furthest point in the set of natural numbers where the ratio of primes (2, 3, 5, ..., 31) to non-primes (0, 1, 4, ..., 32) is [d]

In science

  • The atomic number of germanium
  • The
    degrees Fahrenheit
  • In the Standard Model of particle physics, there are 32 degrees of freedom among the leptons and all bosons that interact with them (including the graviton, which is generally expected to exist, and assuming there are no right-handed neutrinos)[citation needed]

Astronomy

In music

In religion

In the Kabbalah, there are 32 Kabbalistic Paths of Wisdom. This is, in turn, derived from the 32 times of the Hebrew names for God, Elohim appears in the first chapter of Genesis.

One of the central texts of the

Buddha with a list of 32 physical characteristics
.

The Hindu scripture Mudgala Purana also describes Ganesha as taking 32 forms.

In sports

In other fields

Thirty-two could also refer to:

  • The number of teeth of a full set of teeth in an adult human, including
    wisdom teeth
  • The size of a
    32-bit
  • The size, in bits, of certain
    representations of numbers
  • IPv4 uses 32-bit (4-byte
    ) addresses
  • ASCII and Unicode code point for space
  • The
    code for international direct dial
    phone calls to Belgium
  • In the title Thirty-Two Short Films About Glenn Gould, starring Colm Feore
  • The Article 32 of the
    UCMJ
    concerns pre-trial investigations. Such a hearing is often called an "Article 32 hearing"
  • The caliber .32 ACP
  • The number of the French department Gers
  • The traditional 32 counties of Ireland

Notes

  1. ^ 32 is the ninth 10-happy number, while 23 is the sixth.[4] Their sum is 55, which is the tenth triangular number,[3] while their difference is
  2. icosidodecagon
    contains distinct symmetries.[6]
    For comparison, a 16-sided hexadecagon contains 14 symmetries, an 8-sided octagon contains 11 symmetries, and a square contains 8 symmetries.
  3. factor of 11, that is the composite index of 20; the aliquot part of 32 is 31 as well).[2] This is due to the fact that the ratio of composites to primes increases very rapidly, by the prime number theorem
    .
  4. ^ 29 is the only earlier point, where there are twenty non primes, and ten primes. 40 — twice the composite index of 32 — lies between the 8th pair of sexy primes (37, 43),[18] which represent the only two points in the set of natural numbers where the ratio of prime numbers to composite numbers (up to) is 1/2. Where 68 is the forty-eighth composite, 48 is the thirty second, with the difference 6848 = 20, the composite index of 32.[8] Otherwise, thirty-two lies midway between primes (23, 41), (17, 47) and (3, 61).
    At 33, there are 11 numbers that are prime and 22 that are not, when considering instead the set of natural numbers that does not include 0. The product 11 × 33 = 363 represents the thirty-second number to return 0 for the Mertens function M(n).[19]

References

  1. ^ Sloane, N. J. A. (ed.). "Sequence A002088 (Sum of totient function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-05-04.
  2. ^ a b Sloane, N. J. A. (ed.). "Sequence A001065 (Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-01-10.
  3. ^ a b Sloane, N. J. A. (ed.). "Sequence A000217 (Triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-05-04.
  4. ^ "Sloane's A007770 : Happy numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  5. ^ "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  6. .
  7. ^ Sloane, N. J. A. (ed.). "Sequence A000225 (a(n) equal to 2^n - 1. (Sometimes called Mersenne numbers, although that name is usually reserved for A001348.))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-01-08.
  8. ^ a b Sloane, N. J. A. (ed.). "Sequence A002808 (The composite numbers: numbers n of the form x*y for x > 1 and y > 1.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-01-08.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A00040 (The prime numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-01-08.
  10. S2CID 115239655
    .
  11. .
  12. ^ Sloane, N. J. A. (ed.). "Sequence A004028 (Number of geometric n-dimensional crystal classes.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-08.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A004032 (Number of n-dimensional crystal families.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-08.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A003432 (Hadamard maximal determinant problem: largest determinant of a (real) {0,1}-matrix of order n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-04.
  15. .
  16. ^ Baez, John C. (November 15, 2014). "Integral Octonions (Part 8)". John Baez's Stuff. U.C. Riverside, Department of Mathematics. Retrieved 2023-05-04.
  17. .
  18. ^ Sloane, N. J. A. (ed.). "Sequence A156274 (List of prime pairs of the form (p, p+6).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-01-11.
  19. ^ Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers k such that Mertens's function M(k) (A002321) is zero.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-01-11.

External links