3D computer graphics

Source: Wikipedia, the free encyclopedia.

3D computer graphics, sometimes called CGI, 3-D-CGI or three-dimensional

3D images. The resulting images may be stored for viewing later (possibly as an animation) or displayed in real time
.

3-D computer graphics, contrary to what the name suggests, are most often displayed on two-dimensional displays. Unlike

systems.

3-D graphics stand in contrast to

2-D computer graphics
which typically use completely different methods and formats for creation and rendering.

3-D computer graphics rely on many of the same algorithms as 2-D computer vector graphics in the wire-frame model and 2-D computer raster graphics in the final rendered display. In computer graphics software, 2-D applications may use 3-D techniques to achieve effects such as lighting, and similarly, 3-D may use some 2-D rendering techniques.

The objects in 3-D computer graphics are often referred to as

3-D printing, models are rendered into an actual 3-D physical representation of themselves, with some limitations as to how accurately the physical model can match the virtual model.[1]

History

Fred Parke.[5]

3-D computer graphics software began appearing for home computers in the late 1970s. The earliest known example is 3D Art Graphics, a set of 3-D computer graphics effects, written by Kazumasa Mitazawa and released in June 1978 for the Apple II.[6][7]

Overview

3-D computer graphics production workflow falls into three basic phases:

  1. 3-D modeling
    – the process of forming a computer model of an object's shape
  2. Layout and CGI animation – the placement and movement of objects (models, lights etc.) within a scene
  3. 3-D rendering – the computer calculations that, based on light placement, surface
    types, and other qualities, generate (rasterize the scene into) an image

Modeling

The model describes the process of forming the shape of an object. The two most common sources of 3D models are those that an artist or engineer originates on the computer with some kind of

physical simulation. Basically, a 3D model is formed from points called vertices that define the shape and form polygons. A polygon is an area formed from at least three vertices (a triangle). A polygon of n points is an n-gon.[8]
The overall integrity of the model and its suitability to use in animation depend on the structure of the polygons.

Layout and animation

Before rendering into an image, objects must be laid out in a

physical simulation
also specifies motion.

Materials and textures

Materials and textures are properties that the render engine uses to render the model. One can give the model materials to tell the render engine how to treat light when it hits the surface. Textures are used to give the material color using a color or albedo map, or give the surface features using a

displacement map
.

Rendering

3-D projection, which displays a three-dimensional image in two dimensions. Although 3-D modeling and CAD software may perform 3-D rendering as well (e.g., Autodesk 3ds Max or Blender), exclusive 3-D rendering software also exists (e.g., OTOY's Octane Rendering Engine
, Maxon's Redshift)

  • Examples of 3-D rendering
  • A 3-D rendering with ray tracing and ambient occlusion using Blender and YafaRay
    A 3-D rendering with ray tracing and ambient occlusion using Blender and YafaRay
  • A 3-D model of a Dunkerque-class battleship rendered with flat shading
    A 3-D model of a
    flat shading
  • During the 3-D rendering step, the number of reflections "light rays" can take, as well as various other attributes, can be tailored to achieve a desired visual effect. Rendered with Cobalt.
    During the 3-D rendering step, the number of reflections "light rays" can take, as well as various other attributes, can be tailored to achieve a desired visual effect. Rendered with Cobalt.
  • A 3-D rendering of a penthouse
    A 3-D rendering of a penthouse

Software

3-D computer graphics software produces

3-D rendering
or produces 3-D models for analytical, scientific and industrial purposes.

File formats

There are many varieties of files supporting 3-D graphics, for example, Wavefront .obj files and .x DirectX files. Each file type generally tends to have its own unique data structure.

Each file format can be accessed through their respective applications, such as DirectX files, and Quake. Alternatively, files can be accessed through third-party standalone programs, or via manual decompilation.

Modeling

3-D modeling software is a class of 3-D computer graphics software used to produce 3-D models. Individual programs of this class are called modeling applications or modelers.

3-D modeling starts by describing 3 display models : Drawing Points, Drawing Lines and Drawing triangles and other Polygonal patches.[9]

3-D modelers allow users to create and alter models via their 3-D mesh. Users can add, subtract, stretch and otherwise change the mesh to their desire. Models can be viewed from a variety of angles, usually simultaneously. Models can be rotated and the view can be zoomed in and out.

3-D modelers can export their models to files, which can then be imported into other applications as long as the metadata are compatible. Many modelers allow importers and exporters to be plugged-in, so they can read and write data in the native formats of other applications.

Most 3-D modelers contain a number of related features, such as ray tracers and other rendering alternatives and texture mapping facilities. Some also contain features that support or allow animation of models. Some may be able to generate full-motion video of a series of rendered scenes (i.e. animation).

Computer-aided design (CAD)

Computer aided design software may employ the same fundamental 3-D modeling techniques that 3-D modeling software use but their goal differs. They are used in

product lifecycle management, 3D printing and computer-aided architectural design
.

Complementary tools

After producing a video, studios then

software is commonly used to match live video with computer-generated video, keeping the two in sync as the camera moves.

Use of real-time computer graphics engines to create a cinematic production is called machinima.[10]

Other types of 3D appearance

Photorealistic 2D graphics

Not all computer graphics that appear 3D are based on a

manually render
photo-realistic effects without the use of filters.

2.5D

Some video games use 2.5D graphics, involving restricted projections of three-dimensional environments, such as isometric graphics or virtual cameras with fixed angles, either as a way to improve performance of the game engine or for stylistic and gameplay concerns. By contrast, games using 3D computer graphics without such restrictions are said[by whom?] to use true 3D.

See also

References

  1. ^ "3D computer graphics". ScienceDaily. Retrieved 2019-01-19.
  2. ^ "An Historical Timeline of Computer Graphics and Animation". Archived from the original on 2008-03-10. Retrieved 2009-07-22.
  3. ^ "Computer Graphics". Learning Computer History. 5 December 2004.
  4. ^ Ivan Sutherland Sketchpad Demo 1963, retrieved 2023-04-25
  5. ^ "Pixar founder's Utah-made Hand added to National Film Registry". The Salt Lake Tribune. December 28, 2011. Retrieved January 8, 2012.
  6. ^ "Brutal Deluxe Software". www.brutaldeluxe.fr.
  7. ^ "Retrieving Japanese Apple II programs". Projects and Articles. neoncluster.com. Archived from the original on 2016-10-05.
  8. ^ Simmons, Bruce. "n-gon". MathWords. Archived from the original on 2018-12-15. Retrieved 2018-11-30.
  9. .
  10. ^ "Machinima". Internet Archive. Retrieved 2020-07-12.

[1]

  1. ^ "A Beginner's Guide to the Concept of 3D in Computer Graphics". ThePro3DStudio. Retrieved 2024-08-22.