4-Aminobiphenyl

Source: Wikipedia, the free encyclopedia.
(Redirected from
4-aminobiphenyl
)
4-Aminobiphenyl
Names
Preferred IUPAC name
[1,1′-Biphenyl]-4-amine
Other names
4-Aminobiphenyl, xenylamine, 4-ABP
4-Aminodiphenyl[1]
p-Aminobiphenyl[1]
p-Aminodiphenyl[1]
4-Phenylaniline[1]
Identifiers
3D model (
JSmol
)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard
100.001.980 Edit this at Wikidata
EC Number
  • 202-177-1
KEGG
RTECS number
  • DU8925000
UNII
UN number 3077
  • InChI=1S/C12H11N/c13-12-8-6-11(7-9-12)10-4-2-1-3-5-10/h1-9H,13H2 checkY
    Key: DMVOXQPQNTYEKQ-UHFFFAOYSA-N checkY
  • InChI=1/C12H11N/c13-12-8-6-11(7-9-12)10-4-2-1-3-5-10/h1-9H,13H2
    Key: DMVOXQPQNTYEKQ-UHFFFAOYAX
  • c1ccccc1c2ccc(N)cc2
Properties
C12H11N
Molar mass 169.227 g·mol−1
Appearance White solid
Odor Floral[1]
Density 1.16 g/cm3[2]
Melting point 52 to 54 °C (126 to 129 °F; 325 to 327 K)[2]
Boiling point 302 °C (576 °F; 575 K)[2]
Slightly soluble in cold water, soluble in hot water[3]
Vapor pressure 20 mbar (191 °C)[2]
Acidity (pKa) 4.35 (conjugate acid; 18 °C, H2O)[4]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
potential occupational carcinogen[1]
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
1
0
Flash point 147 °C (297 °F; 420 K)
450 °C (842 °F; 723 K)
NIOSH (US health exposure limits):
REL (Recommended)
carcinogen[1]
IDLH
(Immediate danger)
N.D.[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

4-Aminobiphenyl (4-ABP) is an organic compound with the formula C6H5C6H4NH2. It is an

aryl-amine can happen through contact with chemical dyes and from inhalation of cigarette smoke.[6] Researches showed that 4-aminobiphenyl is responsible for bladder cancer in humans and dogs by damaging DNA.[7] Due to its carcinogenic effects, commercial production of 4-aminobiphenyl ceased in the United States in the 1950s.[8]

Synthesis and reactivity

Like other aniline derivatives, 4-aminobiphenyl is weakly basic. It is prepared by reduction of 4-nitrobiphenyl, which, together with the 2-nitro derivatives, is obtained by nitration of biphenyl.[9] Another reaction to synthesize 4-aminobiphenyl can be obtained by using 4-azidobiphenyl. This can be done by reacting 4-azidobiphenyl with diphosphorus tetraiodide (P2I4), which can cleave the nitrogen-nitrogen bond. This reaction is done in benzene and later on, water is added to promote the formation of amine.

Synthesis of 4-aminobiphenyl from azidobiphenyl

Mechanism of action

Possible mechanism for formation of reactive oxygen species during 4-aminobiphenyl metabolism leading to DNA damage.

General mechanism

4-Aminobiphenyl causes DNA damage, which is thought to be mediated by formation of

tumorigenesis
.

4-ABP leading to mutation in p53 gene

One mechanism by which 4-ABP causes bladder cancer is a mutation in the

codons 175, 248 and 273. The other two codons are 280 and 285 do not have CpG sites. These sites are unique hotspots for mutation in bladder cancer and other urinary tract cancers, which chemistry is not yet fully understood.[11]

NAT1 and NAT2 can O-acetylate N-hydroxy-4-aminobiphenyl (above) and N-acetylate 4-amino biphenyl (below)

Metabolism process in humans

Cytochrome P450 1A2 oxidizes 4-aminobiphenyl to N-hydroxy-4-aminobiphenyl. Following O-acetylation, the latter can form DNA adducts. O-Acetylation reactions are catalyzed by NAT, N-acetyltransferase; and UDP-glucuronosyltransferase (UGT) enzymes.[12] Two different enzymes can catalyze this reaction, NAT1 and NAT2. These enzymes can also N-acetylate 4-aminobiphenyl. N-Acetylated products are difficult to oxidize and because of this acetylation is considered a detoxification step for aromatic amines.[citation needed]

bladder lumen. N-glucuronides of 4-aminobiphenyl and N-hydroxy-4-aminobiphenyl can be hydrolyzed by acidic urine to their corresponding arylamines, they can in turn enter the bladder epithelium and undergo further metabolism by peroxidation and/or O-acetylation to form DNA adducts.[12]

Toxicity

Human toxicity

Toxic fumes arise from this compound when heated to decomposition.[13] Excessive inhalation exposure of 4-aminobiphenyl may induce acute toxicity such as headache, lethargy, cyanosis and burning sensations mainly in the urinary tract.[14]

4-Aminobiphenyl is a human carcinogen, specifically to the tissues involving the urinary system, i.e., the bladder, ureter, and renal pelvis. In one study, out of 171 workers in a plant manufacturing 4-aminobiphenyl, 11% of them developed bladder tumors.

urothelial mucosa and bladder tumor tissues. Levels of these adducts in smokers of blond and black tobacco were found to be proportional to bladder cancer risk.[13]

Animal toxicity

The

granulocytes or the rod neutrophilic granulocyte and to a pronounced hematuria or hemoglobinuria.[14]

References

  1. ^ a b c d e f g h NIOSH Pocket Guide to Chemical Hazards. "#0025". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ a b c d Record of CAS RN 92-67-1 in the GESTIS Substance Database of the Institute for Occupational Safety and Health, accessed on 8. April 2009.
  3. ^ Humans, IARC Working Group on the Evaluation of Carcinogenic Risk to (2010). Some Aromatic Amines, Organic Dyes, and Related Exposures. International Agency for Research on Cancer.
  4. .
  5. ^ Humans, IARC Working Group on the Evaluation of Carcinogenic Risk to (2012). 4-AMINOBIPHENYL. International Agency for Research on Cancer.
  6. PMID 378100
    .
  7. .
  8. .
  9. .
  10. ^ .
  11. .
  12. ^ .
  13. ^ a b c "4‑Aminobiphenyl" (PDF). Retrieved 2018-03-14.
  14. ^ a b The MAK-Collection for Occupational Health and Safety: Annual Thresholds and Classifications for the Workplace, 1.
  15. ^ "4-Biphenylamine". Retrieved 2018-03-21.
  16. PMID 15880493
    .