63 (number)

Source: Wikipedia, the free encyclopedia.
← 62 63 64 →
Cardinalsixty-three
Ordinal63rd
(sixty-third)
Factorization32 × 7
Divisors1, 3, 7, 9, 21, 63
Greek numeralΞΓ´
Roman numeralLXIII
Binary1111112
Ternary21003
Senary1436
Octal778
Duodecimal5312
Hexadecimal3F16

63 (sixty-three) is the natural number following 62 and preceding 64.

Mathematics

63 is the sum of the first six

posets.[3]

Sixty-three is the seventh square-prime of the form and the second of the form . It contains a prime aliquot sum of 41, the thirteenth indexed prime; and part of the aliquot sequence (63, 41, 1, 0) within the 41-aliquot tree.

63 is the third Delanoy number, for the number of ways to travel from a southwest corner to a northeast corner in a 3 by 3 grid.

Zsigmondy's theorem states that where are

coprime integers
for any integer , there exists a primitive prime divisor that divides and does not divide for any positive integer , except for when

and for a special case where with and , which yields .[4]

63 is a Mersenne number of the form with an of ,

odd number
, of the simplest form , is 63.[8] It is also the fourth Woodall number of the form with , with the previous members being 1, 7 and 23 (they add to 31, the third Mersenne prime).[9]

In the integer positive definite quadratic matrix representative of all (even and odd) integers,[10][11] the sum of all nine terms is equal to 63.

63 is the third Delannoy number, which represents the number of pathways in a grid from a southwest corner to a northeast corner, using only single steps northward, eastward, or northeasterly.[12]

Finite simple groups

63 holds thirty-six integers that are

exponents that figure in the orders of three exceptional groups of Lie type. The orders of these groups are equivalent to the product between the quotient
of (with prime and a positive integer) by the GCD of , and a (in capital pi notation, product over a set of terms):[14]

the order of exceptional Chevalley
finite simple group
of Lie type,
the order of exceptional Chevalley finite simple group of Lie type,
the order of one of two exceptional Steinberg groups,

Lie algebra holds thirty-six positive roots in sixth-dimensional space, while holds sixty-three positive root vectors in the seven-dimensional space (with one hundred and twenty-six total root vectors, twice 63).[15] The thirty-sixth-largest of thirty-seven total complex reflection groups is , with order where the previous has order ; these are associated, respectively, with and [16]

There are 63 uniform polytopes in the sixth dimension that are generated from the abstract hypercubic

demicube is also included in this family),[17] that is associated with classical Chevalley Lie algebra
via the
special orthogonal Lie algebra (by symmetries shared between unordered and ordered Dynkin diagrams
). There are also 36 uniform 6-polytopes that are generated from the
self-dual configurations of the regular 6-simplex separately.[17]
In similar fashion, is associated with classical Chevalley Lie algebra through the special linear group and its corresponding special linear Lie algebra.

In the third dimension, there are a total of sixty-three stellations generated with icosahedral symmetry , using

compound of two self-dual tetrahedra that facets the cube, since it shares its vertex arrangement
. Overall, of order 120 contains a total of thirty-one axes of symmetry;[19] specifically, the lattice that is associated with exceptional Lie algebra contains symmetries that can be traced back to the regular icosahedron via the icosians.[20] The icosahedron and dodecahedron can inscribe any of the other three Platonic solids, which are all collectively responsible for generating a maximum of thirty-six polyhedra which are either regular (Platonic), semi-regular (Archimedean), or duals to semi-regular polyhedra containing regular vertex-figures (Catalan), when including four enantiomorphs from two semi-regular snub polyhedra and their duals as well as self-dual forms of the tetrahedron.[21]

Otherwise, the sum of the divisors of sixty-three, ,[22] is equal to the constant term that belongs to the

McKay–Thompson series
) of sporadic group , the second largest such group after the Friendly Giant .[23] This value is also the value of the minimal faithful dimensional representation of the Tits group ,
finite simple group that can categorize as being non-strict of Lie type, or loosely sporadic; that is also twice the faithful dimensional representation of exceptional Lie algebra
, in 52 dimensions.

In science

Astronomy

In other fields

Sixty-three is also:

In religion

  • There are 63 Tractates in the
    Mishna
    , the compilation of Jewish Law.
  • There are 63 Saints (popularly known as Nayanmars) in South Indian Shaivism, particularly in Tamil Nadu, India.
  • There are 63 Salakapurusas (great beings) in Jain cosmology.

References

  1. ^ Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers: records for a(n) in A063741.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-08-06.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A000112 (Number of partially ordered sets (posets) with n unlabeled elements)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-08-06.
  4. .
  5. ^ a b Sloane, N. J. A. (ed.). "Sequence A000225 (a(n) equal to 2^n - 1. (Sometimes called Mersenne numbers, although that name is usually reserved for A001348.))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-08-06.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A002808 (The composite numbersnumbers n of the form x*y for x > 1 and y > 1.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-08-06.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A000668 (Mersenne primes (primes of the form 2^n - 1).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-08-06.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A005408 (The odd numbers: a(n) equal to 2*n + 1.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-08-06.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A003261 (Woodall numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  10. ^ Sloane, N. J. A. (ed.). "Sequence A030050 (Numbers from the Conway-Schneeberger 15-theorem.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-10-09.
  11. .
  12. ^ Sloane, N. J. A. (ed.). "Sequence A001850 (Central Delannoy numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A000010 (Euler totient function phi(n): count numbers less than or equal to n and prime to n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-08-06.
  14. S2CID 125460079
    .
  15. .
  16. .
  17. ^ .
  18. ^ Webb, Robert. "Enumeration of Stellations". Stella. Archived from the original on 2022-11-26. Retrieved 2023-09-21.
  19. S2CID 202679388.{{cite book}}: CS1 maint: location missing publisher (link
    )
  20. .
  21. .
    See Tables 5, 6 and 7 (groups T1, O1 and I1, respectively).
  22. ^ Sloane, N. J. A. (ed.). "Sequence A000203 (a(n) equal to sigma(n), the sum of the divisors of n. Also called sigma_1(n).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-08-06.
  23. ^ Sloane, N. J. A. (ed.). "Sequence A007267 (Expansion of 16 * (1 + k^2)^4 /(k * k'^2)^2 in powers of q where k is the Jacobian elliptic modulus, k' the complementary modulus and q is the nome.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-07-31.
  24. .