ATF4

Source: Wikipedia, the free encyclopedia.
ATF4
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_182810
NM_001675

NM_001287180
NM_009716

RefSeq (protein)

NP_001666
NP_877962

NP_001274109
NP_033846

Location (UCSC)Chr 22: 39.52 – 39.52 MbChr 15: 80.14 – 80.14 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Activating transcription factor 4 (tax-responsive enhancer element B67), also known as ATF4, is a protein that in humans is encoded by the ATF4 gene.[5][6]

Function

This gene encodes a transcription factor that was originally identified as a widely expressed mammalian DNA binding protein that could bind a tax-responsive enhancer element in the LTR of HTLV-1. The encoded protein was also isolated and characterized as the cAMP-response element binding protein 2 (CREB-2). ATF4 is not a functional transcription factor by itself but one-half of many possible heterodimeric transcription factors. Because ATF4 can simultaneously participate in multiple distinct heterodimers, the overall set of genes that require ATF4 for maximal expression in a specific context (ATF4-dependent genes) can be a mixture of genes that are regulated by different ATF4 heterodimers, with some ATF4-dependent genes activated by one ATF4 heterodimer and other ATF4-dependent genes activated by other ATF4 heterodimers.[7]

The protein encoded by this gene belongs to a family of DNA-binding proteins that includes the

AP-1 family of transcription factors, cAMP-response element binding proteins (CREBs) and CREB-like proteins. These transcription factors share a leucine zipper region that is involved in protein–protein interactions, located C-terminal to a stretch of basic amino acids that functions as a DNA-binding domain. Two alternative transcripts encoding the same protein have been described. Two pseudogenes are located on the X chromosome at q28 in a region containing a large inverted duplication.[8]

ATF4 transcription factor is also known to play role in osteoblast differentiation along with RUNX2 and osterix.[9] Terminal osteoblast differentiation, represented by matrix mineralization, is significantly inhibited by the inactivation of JNK. JNK inactivation downregulates expression of ATF-4 and, subsequently, matrix mineralization.[10] IMPACT protein regulates ATF4 in C. elegans to promote lifespan.[11]

ATF4 is also involved in the

Δ9-tetrahydrocannabinol–induced apoptosis in cancer cells, by the proapoptotic role of the stress protein p8 via its upregulation of the endoplasmic reticulum stress-related genes ATF4, CHOP, and TRB3.[12][13]

Translation

The translation of ATF4 is dependent on

40S ribosome will bypass uORF2 because of a decrease in concentration of eIF2-TC, which means the ribosome does not acquire one in time to translate uORF2. Instead ATF4 is translated.[14]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000128272Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000042406Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 1847461
    .
  6. .
  7. .
  8. ^ "Entrez Gene: ATF4 activating transcription factor 4 (tax-responsive enhancer element B67)".
  9. PMID 18728356
    .
  10. .
  11. .
  12. .
  13. .
  14. ^ .

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


This page is based on the copyrighted Wikipedia article: ATF4. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy