Acetic acid

Source: Wikipedia, the free encyclopedia.

Acetic acid
Skeletal formula of acetic acid
Skeletal formula of acetic acid
Spacefill model of acetic acid
Spacefill model of acetic acid
Skeletal formula of acetic acid with all explicit hydrogens added
Skeletal formula of acetic acid with all explicit hydrogens added
Ball and stick model of acetic acid
Ball and stick model of acetic acid
Sample of acetic acid in a reagent bottle
Names
Preferred IUPAC name
Acetic acid[3]
Systematic IUPAC name
Ethanoic acid
Other names
Vinegar (when dilute); Hydrogen acetate; Methanecarboxylic acid; Ethylic acid[1][2]
Identifiers
3D model (
JSmol
)
3DMet
Abbreviations AcOH
506007
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard
100.000.528 Edit this at Wikidata
EC Number
  • 200-580-7
E number E260 (preservatives)
1380
IUPHAR/BPS
KEGG
MeSH Acetic+acid
RTECS number
  • AF1225000
UNII
UN number 2789
  • InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4) checkY
    Key: QTBSBXVTEAMEQO-UHFFFAOYSA-N checkY
  • CC(O)=O
Properties
CH3COOH
Molar mass 60.052 g·mol−1
Appearance Colourless liquid
Odor Heavily vinegar-like
Density 1.049 g/cm3 (liquid); 1.27 g/cm3 (solid)
Melting point 16 to 17 °C; 61 to 62 °F; 289 to 290 K
Boiling point 118 to 119 °C; 244 to 246 °F; 391 to 392 K
Miscible
log P -0.28[4]
Vapor pressure 1.54653947 kPa (20 °C)
11.6 mmHg (20 °C)[5]
Acidity (pKa) 4.756
Conjugate base
Acetate
-31.54·10−6 cm3/mol
1.371 (VD = 18.19)
Viscosity 1.22 mPa s
1.22 cP
1.74 D
Thermochemistry
123.1 J K−1 mol−1
158.0 J K−1 mol−1
Std enthalpy of
formation
fH298)
-483.88–483.16 kJ/mol
Std enthalpy of
combustion
cH298)
-875.50–874.82 kJ/mol
Pharmacology
G01AD02 (WHO) S02AA10 (WHO)
Legal status
  • AU: S2 (Pharmacy medicine) and S6
Hazards
GHS labelling:
GHS02: Flammable GHS05: Corrosive
Danger
H226, H314
P280, P305+P351+P338, P310
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
2
0
Flash point 40 °C (104 °F; 313 K)
427 °C (801 °F; 700 K)
Explosive limits
4–16%
Lethal dose or concentration (LD, LC):
3.31 g kg−1, oral (rat)
5620 ppm (mouse, 1 hr)
16000 ppm (rat, 4 hr)[7]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 10 ppm (25 mg/m3)[6]
REL (Recommended)
TWA 10 ppm (25 mg/m3) ST 15 ppm (37 mg/m3)[6]
IDLH
(Immediate danger)
50 ppm[6]
Related compounds
Formic acid
Propionic acid
Related compounds
Acetaldehyde
Acetamide
Acetic anhydride
Chloroacetic acid
Acetyl chloride
Glycolic acid
Ethyl acetate
Potassium acetate
Sodium acetate
Thioacetic acid
Supplementary data page
Acetic acid (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Acetic acid
Clinical data
ECHA InfoCard
100.000.528 Edit this at Wikidata
Data page
Acetic acid (data page)

Acetic acid /əˈstɪk/, systematically named ethanoic acid /ˌɛθəˈnɪk/, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH (also written as CH3CO2H, C2H4O2, or HC2H3O2). Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water. It has been used, as a component of vinegar, throughout history from at least the third century BC.

Acetic acid is the second simplest carboxylic acid (after formic acid). It is an important chemical reagent and industrial chemical across various fields, used primarily in the production of cellulose acetate for photographic film, polyvinyl acetate for wood glue, and synthetic fibres and fabrics. In households, diluted acetic acid is often used in descaling agents. In the food industry, acetic acid is controlled by the food additive code E260 as an acidity regulator and as a condiment. In biochemistry, the acetyl group, derived from acetic acid, is fundamental to all forms of life. When bound to coenzyme A, it is central to the metabolism of carbohydrates and fats.

The global demand for acetic acid is about 6.5 million metric tonnes per year (t/a), manufactured from methanol.[8] Its production and subsequent industrial use poses health hazards to workers, including incidental skin damage and chronic respiratory injuries from inhalation.[9]

Nomenclature

The

IUPAC name, is constructed according to the substitutive nomenclature.[10] The name "acetic acid" derives from the Latin word for vinegar, "acetum", which is related to the word "acid
" itself.

"Glacial acetic acid" is a name for water-free (anhydrous) acetic acid. Similar to the German name "Eisessig" ("ice vinegar"), the name comes from the solid ice-like crystals that form with agitation, slightly below room temperature at 16.6 °C (61.9 °F). Acetic acid can never be truly water-free in an atmosphere that contains water, so the presence of 0.1% water in glacial acetic acid lowers its melting point by 0.2 °C.[11]

A common

conjugate base, acetate (CH3COO), is thus represented as AcO.[12] (The symbol Ac for the acetyl functional group is not to be confused with the symbol Ac for the element actinium; context prevents confusion among organic chemists). To better reflect its structure, acetic acid is often written as CH3−C(O)OH, CH3−C(=O)OH, CH3COOH, and CH3CO2H. In the context of acid–base reactions, the abbreviation HAc is sometimes used,[13] where Ac in this case is a symbol for acetate (rather than acetyl). Acetate is the ion resulting from loss of H+ from acetic acid. The name "acetate" can also refer to a salt containing this anion, or an ester of acetic acid.[14]

History

Sapa that was produced in lead pots was rich in lead acetate, a sweet substance also called sugar of lead or sugar of Saturn, which contributed to lead poisoning among the Roman aristocracy.[15]

In the 16th-century German alchemist Andreas Libavius described the production of acetone from the dry distillation of lead acetate, ketonic decarboxylation. The presence of water in vinegar has such a profound effect on acetic acid's properties that for centuries chemists believed that glacial acetic acid and the acid found in vinegar were two different substances. French chemist Pierre Adet proved them identical.[15][16]

glass beaker of crystallised acetic acid
Crystallised acetic acid

In 1845 German chemist

chlorination of carbon disulfide to carbon tetrachloride, followed by pyrolysis to tetrachloroethylene and aqueous chlorination to trichloroacetic acid, and concluded with electrolytic reduction to acetic acid.[17]

By 1910, most glacial acetic acid was obtained from the pyroligneous liquor, a product of the distillation of wood. The acetic acid was isolated by treatment with milk of lime, and the resulting calcium acetate was then acidified with sulfuric acid to recover acetic acid. At that time, Germany was producing 10,000 tons of glacial acetic acid, around 30% of which was used for the manufacture of indigo dye.[15][18]

Because both

Monsanto Company built the first plant using this catalyst in 1970, and rhodium-catalyzed methanol carbonylation became the dominant method of acetic acid production (see Monsanto process). In the late 1990s, BP Chemicals commercialised the Cativa catalyst ([Ir(CO)2I2]), which is promoted by iridium for greater efficiency.[20] Known as the Cativa process, the iridium-catalyzed production of glacial acetic acid is greener, and has largely supplanted the Monsanto process, often in the same production plants.[21]

Interstellar medium

Millimeter Array located at the Owens Valley Radio Observatory. It was first detected in the Sagittarius B2 North molecular cloud (also known as the Sgr B2 Large Molecule Heimat source). Acetic acid has the distinction of being the first molecule discovered in the interstellar medium using solely radio interferometers; in all previous ISM molecular discoveries made in the millimetre and centimetre wavelength regimes, single dish radio telescopes were at least partly responsible for the detections.[22]

Properties

Acetic acid crystals

Acidity

The hydrogen centre in the

carboxyl group
(−COOH) in carboxylic acids such as acetic acid can separate from the molecule by ionization:

CH3COOH ⇌ CH3CO2 + H+

Because of this release of the

M solution (about the concentration of domestic vinegar) has a pH of 2.4, indicating that merely 0.4% of the acetic acid molecules are dissociated.[a]
However, in very dilute (< 10−6 M) solution, acetic acid is >90% dissociated.

Deprotonation equilibrium of acetic acid in water

Cyclic dimer of acetic acid; dashed green lines represent hydrogen bonds

Structure

In solid acetic acid, the molecules form chains of individual molecules interconnected by

dimers can be detected. Dimers also occur in the liquid phase in dilute solutions with non-hydrogen-bonding solvents, and to a certain extent in pure acetic acid,[25] but are disrupted by hydrogen-bonding solvents. The dissociation enthalpy of the dimer is estimated at 65.0–66.0 kJ/mol, and the dissociation entropy at 154–157 J mol−1 K−1.[26] Other carboxylic acids engage in similar intermolecular hydrogen bonding interactions.[27]

Solvent properties

miscible at all compositions, and solubility of acetic acid in alkanes declines with longer n-alkanes.[28] The solvent and miscibility properties of acetic acid make it a useful industrial chemical, for example, as a solvent in the production of dimethyl terephthalate.[8]

Biochemistry

At physiological pHs, acetic acid is usually fully ionised to acetate.

The

fatty acids), acetic acid does not occur in natural triglycerides. Most of the aceate generated in cells for use in acetyl-CoA is synthesized directly from ethanol or pyruvate.[30] However, the artificial triglyceride triacetin (glycerine triacetate) is a common food additive and is found in cosmetics and topical medicines; this additive is metabolized to glycerol and acetic acid in the body.[31]

Acetic acid is produced and

Production

Purification and concentration plant for acetic acid in 1884

Acetic acid is produced industrially both synthetically and by bacterial

fermentation. About 75% of acetic acid made for use in the chemical industry is made by the carbonylation of methanol, explained below.[8] The biological route accounts for only about 10% of world production, but it remains important for the production of vinegar because many food purity laws require vinegar used in foods to be of biological origin. Other processes are methyl formate isomerization, conversion of syngas to acetic acid, and gas phase oxidation of ethylene and ethanol.[33]

Acetic acid can be purified via fractional freezing using an ice bath. The water and other impurities will remain liquid while the acetic acid will precipitate out. As of 2003–2005, total worldwide production of virgin acetic acid[b] was estimated at 5 Mt/a (million tonnes per year), approximately half of which was produced in the United States. European production was approximately 1 Mt/a and declining, while Japanese production was 0.7 Mt/a. Another 1.5 Mt were recycled each year, bringing the total world market to 6.5 Mt/a.[34][35] Since then, the global production has increased from 10.7 Mt/a in 2010[36] to 17.88 Mt/a in 2023.[37] The two biggest producers of virgin acetic acid are Celanese and BP Chemicals. Other major producers include Millennium Chemicals, Sterling Chemicals, Samsung, Eastman, and Svensk Etanolkemi [sv].[38]

Methanol carbonylation

Most acetic acid is produced by methanol carbonylation. In this process, methanol and carbon monoxide react to produce acetic acid according to the equation:

The process involves iodomethane as an intermediate, and occurs in three steps. A metal carbonyl catalyst is needed for the carbonylation (step 2).[33]

  1. CH3OH + HI → CH3I + H2O
  2. CH3I + CO → CH3COI
  3. CH3COI + H2O → CH3COOH + HI

Two related processes exist for the carbonylation of methanol: the rhodium-catalyzed

water-gas shift reaction
is suppressed, and fewer by-products are formed.

By altering the process conditions, acetic anhydride may also be produced in plants using rhodium catalysis.[39]

Acetaldehyde oxidation

Prior to the commercialization of the Monsanto process, most acetic acid was produced by oxidation of

hydration of acetylene. This was the dominant technology in the early 1900s.[40]

Light

peroxides, which decompose to produce acetic acid according to the chemical equation, illustrated with butane
:

2 C4H10 + 5 O2 → 4 CH3CO2H + 2 H2O

Such oxidations require metal catalyst, such as the naphthenate salts of manganese, cobalt, and chromium.

The typical reaction is conducted at temperatures and pressures designed to be as hot as possible while still keeping the butane a liquid. Typical reaction conditions are 150 °C (302 °F) and 55 atm.[41] Side-products may also form, including butanone, ethyl acetate, formic acid, and propionic acid. These side-products are also commercially valuable, and the reaction conditions may be altered to produce more of them where needed. However, the separation of acetic acid from these by-products adds to the cost of the process.[42]

Similar conditions and

air to produce acetic acid can oxidize acetaldehyde.[42]

2 CH3CHO + O2 → 2 CH3CO2H

Using modern catalysts, this reaction can have an acetic acid yield greater than 95%. The major side-products are ethyl acetate, formic acid, and formaldehyde, all of which have lower boiling points than acetic acid and are readily separated by distillation.[42]

Ethylene oxidation

Acetaldehyde may be prepared from ethylene via the Wacker process, and then oxidised as above.

In more recent times, chemical company

heteropoly acid such as silicotungstic acid. A similar process uses the same metal catalyst on silicotungstic acid and silica:[43]

C2H4 + O2 → CH3CO2H

It is thought to be competitive with methanol carbonylation for smaller plants (100–250 kt/a), depending on the local price of ethylene. The approach will be based on utilizing a novel selective photocatalytic oxidation technology for the selective oxidation of ethylene and ethane to acetic acid. Unlike traditional oxidation catalysts, the selective oxidation process will use UV light to produce acetic acid at ambient temperatures and pressure.

Oxidative fermentation

For most of human history, acetic acid bacteria of the genus Acetobacter have made acetic acid, in the form of vinegar. Given sufficient oxygen, these bacteria can produce vinegar from a variety of alcoholic foodstuffs. Commonly used feeds include apple cider, wine, and fermented grain, malt, rice, or potato mashes. The overall chemical reaction facilitated by these bacteria is:

C2H5OH + O2 → CH3COOH + H2O

A dilute alcohol solution inoculated with Acetobacter and kept in a warm, airy place will become vinegar over the course of a few months. Industrial vinegar-making methods accelerate this process by improving the supply of oxygen to the bacteria.[44]

The first batches of vinegar produced by fermentation probably followed errors in the

grapes. As the demand for vinegar for culinary, medical, and sanitary purposes increased, vintners quickly learned to use other organic materials to produce vinegar in the hot summer months before the grapes were ripe and ready for processing into wine. This method was slow, however, and not always successful, as the vintners did not understand the process.[45]

One of the first modern commercial processes was the "fast method" or "German method", first practised in Germany in 1823. In this process, fermentation takes place in a tower packed with wood shavings or

air supplied from the bottom by either natural or forced convection. The improved air supply in this process cut the time to prepare vinegar from months to weeks.[46]

Nowadays, most vinegar is made in submerged tank culture, first described in 1949 by Otto Hromatka and Heinrich Ebner.[47] In this method, alcohol is fermented to vinegar in a continuously stirred tank, and oxygen is supplied by bubbling air through the solution. Using modern applications of this method, vinegar of 15% acetic acid can be prepared in only 24 hours in batch process, even 20% in 60-hour fed-batch process.[45]

Anaerobic fermentation

Species of

anaerobic bacteria, including members of the genus Clostridium or Acetobacterium
can convert sugars to acetic acid directly without creating ethanol as an intermediate. The overall chemical reaction conducted by these bacteria may be represented as:

C6H12O6 → 3 CH3COOH

These acetogenic bacteria produce acetic acid from one-carbon compounds, including methanol, carbon monoxide, or a mixture of carbon dioxide and hydrogen:

2 CO2 + 4 H2 → CH3COOH + 2 H2O

This ability of Clostridium to metabolize sugars directly, or to produce acetic acid from less costly inputs, suggests that these bacteria could produce acetic acid more efficiently than ethanol-oxidizers like Acetobacter. However, Clostridium bacteria are less acid-tolerant than Acetobacter. Even the most acid-tolerant Clostridium strains can produce vinegar in concentrations of only a few per cent, compared to Acetobacter strains that can produce vinegar in concentrations up to 20%. At present, it remains more cost-effective to produce vinegar using Acetobacter, rather than using Clostridium and concentrating it. As a result, although acetogenic bacteria have been known since 1940, their industrial use is confined to a few niche applications.[48]

Uses

Acetic acid is a chemical reagent for the production of chemical compounds. The largest single use of acetic acid is in the production of vinyl acetate monomer, closely followed by acetic anhydride and ester production. The volume of acetic acid used in vinegar is comparatively small.[8][34]

Vinyl acetate monomer

The primary use of acetic acid is the production of

catalyst, conducted in the gas phase.[49]

2 H3C−COOH + 2 C2H4 + O2 → 2 H3C−CO−O−CH=CH2 + 2 H2O

Vinyl acetate can be polymerised to

polymers, which are components in paints and adhesives.[49]

Ester production

The major

catalyzed reaction from acetic acid and the corresponding alcohol
:

CH3COO−H + HO−R → CH3COO−R + H2O, R = general alkyl group

For example, acetic acid and ethanol gives ethyl acetate and water.

CH3COO−H + HO−CH2CH3 → CH3COO−CH2CH3 + H2O

Most acetate

acrylic lacquers, varnish removers, and wood stains. First, glycol monoethers are produced from ethylene oxide or propylene oxide with alcohol, which are then esterified with acetic acid. The three major products are ethylene glycol monoethyl ether acetate (EEA), ethylene glycol monobutyl ether acetate (EBA), and propylene glycol monomethyl ether acetate (PMA, more commonly known as PGMEA in semiconductor manufacturing processes, where it is used as a resist solvent). This application consumes about 15% to 20% of worldwide acetic acid. Ether acetates, for example EEA, have been shown to be harmful to human reproduction.[34]

Acetic anhydride

The product of the condensation of two molecules of acetic acid is acetic anhydride. The worldwide production of acetic anhydride is a major application, and uses approximately 25% to 30% of the global production of acetic acid. The main process involves dehydration of acetic acid to give ketene at 700–750 °C. Ketene is thereafter reacted with acetic acid to obtain the anhydride:[50]

CH3CO2H → CH2=C=O + H2O
CH3CO2H + CH2=C=O → (CH3CO)2O

Acetic anhydride is an acetylation agent. As such, its major application is for cellulose acetate, a synthetic textile also used for photographic film. Acetic anhydride is also a reagent for the production of heroin and other compounds.[50]

Use as solvent

As a polar protic solvent, acetic acid is frequently used for recrystallization to purify organic compounds. Acetic acid is used as a solvent in the production of terephthalic acid (TPA), the raw material for polyethylene terephthalate (PET). In 2006, about 20% of acetic acid was used for TPA production.[34]

Acetic acid is often used as a solvent for reactions involving

Wagner-Meerwein rearrangement of camphene to isobornyl acetate; here acetic acid acts both as a solvent and as a nucleophile to trap the rearranged carbocation.[51]

Glacial acetic acid is used in analytical chemistry for the estimation of weakly alkaline substances such as organic amides. Glacial acetic acid is a much weaker base than water, so the amide behaves as a strong base in this medium. It then can be titrated using a solution in glacial acetic acid of a very strong acid, such as perchloric acid.[52]

Medical use

Acetic acid injection into a tumor has been used to treat cancer since the 1800s.[53][54]

Acetic acid is used as part of

developing world.[55] The acid is applied to the cervix and if an area of white appears after about a minute the test is positive.[55]

Acetic acid is an effective antiseptic when used as a 1% solution, with broad spectrum of activity against streptococci, staphylococci, pseudomonas, enterococci and others.[56][57][58] It may be used to treat skin infections caused by pseudomonas strains resistant to typical antibiotics.[59]

While diluted acetic acid is used in iontophoresis, no high quality evidence supports this treatment for rotator cuff disease.[60][61]

As a treatment for otitis externa, it is on the World Health Organization's List of Essential Medicines.[62][63]

Foods

Acetic acid has 349 kcal (1,460 kJ) per 100 g.[64] Vinegar is typically no less than 4% acetic acid by mass.[65][66][67] Legal limits on acetic acid content vary by jurisdiction. Vinegar is used directly as a condiment, and in the pickling of vegetables and other foods. Table vinegar tends to be more diluted (4% to 8% acetic acid), while commercial food pickling employs solutions that are more concentrated. The proportion of acetic acid used worldwide as vinegar is not as large as industrial uses, but it is by far the oldest and best-known application.[68]

Reactions

Organic chemistry

Two typical organic reactions of acetic acid

Acetic acid undergoes the typical

Fischer esterification, and amides can be formed. When heated above 440 °C (824 °F), acetic acid decomposes to produce carbon dioxide and methane, or to produce ketene and water:[69][70][71]

CH3COOH → CH4 + CO2
CH3COOH → CH2=C=O + H2O

Reactions with inorganic compounds

Acetic acid is mildly corrosive to metals including iron, magnesium, and zinc, forming hydrogen gas and salts called acetates:

Mg + 2 CH3COOH → (CH3COO)2Mg + H2

Because aluminium forms a passivating acid-resistant film of aluminium oxide, aluminium tanks are used to transport acetic acid. Metal acetates can also be prepared from acetic acid and an appropriate base, as in the popular "baking soda + vinegar" reaction giving off sodium acetate:

NaHCO3 + CH3COOH → CH3COONa + CO2 + H2O

A

malodorous vapours.[74]

Other derivatives

Organic or inorganic salts are produced from acetic acid. Some commercially significant derivatives:

Halogenated acetic acids are produced from acetic acid. Some commercially significant derivatives:

Amounts of acetic acid used in these other applications together account for another 5–10% of acetic acid use worldwide.[34]

Health and safety

Vapour

Prolonged inhalation exposure (eight hours) to acetic acid vapours at 10 ppm can produce some irritation of eyes, nose, and throat; at 100 ppm marked lung irritation and possible damage to lungs, eyes, and skin may result. Vapour concentrations of 1,000 ppm cause marked irritation of eyes, nose and upper respiratory tract and cannot be tolerated. These predictions were based on animal experiments and industrial exposure.[75]

In 12 workers exposed for two or more years to an airborne average concentration of 51 ppm acetic acid (estimated), symptoms of conjunctive irritation, upper respiratory tract irritation, and hyperkeratotic dermatitis were produced. Exposure to 50 ppm or more is intolerable to most persons and results in intensive lacrimation and irritation of the eyes, nose, and throat, with pharyngeal oedema and chronic bronchitis. Unacclimatised humans experience extreme eye and nasal irritation at concentrations in excess of 25 ppm, and conjunctivitis from concentrations below 10 ppm has been reported. In a study of five workers exposed for seven to 12 years to concentrations of 80 to 200 ppm at peaks, the principal findings were blackening and hyperkeratosis of the skin of the hands, conjunctivitis (but no corneal damage), bronchitis and pharyngitis, and erosion of the exposed teeth (incisors and canines).[9]

Solution

Concentrated acetic acid (≥ 25%) is corrosive to skin.[76] These burns or blisters may not appear until hours after exposure.[77] The hazardous properties of acetic acid are dependent on the concentration of the (typically aqueous) solution, with the most significant increases in hazard levels at thresholds of 25% and 90% acetic acid concentration by weight. The following table summarizes the hazards of acetic acid solutions by concentration:[78]

Concentration
by weight
Molarity GHS pictograms
H-Phrases
10–25% 1.67–4.16 mol/L GHS07: Exclamation mark H315
25–90% 4.16–14.99 mol/L GHS05: Corrosive H314
>90% >14.99 mol/L GHS02: FlammableGHS05: Corrosive H226, H314

Concentrated acetic acid can be ignited only with difficulty at standard temperature and pressure, but becomes a flammable risk in temperatures greater than 39 °C (102 °F), and can form explosive mixtures with air at higher temperatures with

explosive limits
of 5.4–16% concentration.

See also

Notes

  1. ^ [H3O+] = 10−2.4 = 0.4%
  2. ^ Acetic acid that is manufactured by intent, rather than recovered from processing (such as the production of cellulose acetates, polyvinyl alcohol operations, and numerous acetic anhydride acylations).

References

  1. ^ Scientific literature reviews on generally recognised as safe (GRAS) food ingredients. National Technical Information Service. 1974. p. 1.
  2. ^ "Chemistry", volume 5, Encyclopædia Britannica, 1961, page 374
  3. .
  4. ^ "acetic acid_msds".
  5. ^ Lange's Handbook of Chemistry, 10th ed.
  6. ^ a b c NIOSH Pocket Guide to Chemical Hazards. "#0002". National Institute for Occupational Safety and Health (NIOSH).
  7. ^ "Acetic acid". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  8. ^ .
  9. ^ a b Sherertz PC (1 June 1994). Acetic Acid (PDF). Virginia Department of Health Division of Health Hazards Control. Archived from the original (PDF) on 4 March 2016.
  10. ^ IUPAC Provisional Recommendations 2004 Chapter P-12.1; page 4
  11. .
  12. .
  13. .
  14. ^ Hendrickson JB, Cram DJ, Hammond GS (1970). Organic Chemistry (3rd ed.). Tokyo: McGraw Hill Kogakusha. p. 135.
  15. ^ a b c Martin G (1917). Industrial and Manufacturing Chemistry (Part 1, Organic ed.). London: Crosby Lockwood. pp. 330–331.
  16. ^ Adet PA (1798). "Mémoire sur l'acide acétique" [Memoir on acetic acid]. Annales de Chimie (in French). 27: 299–319.
  17. ^ Goldwhite H (September 2003). "This month in chemical history" (PDF). New Haven Section Bulletin American Chemical Society. 20 (3): 4. Archived from the original (PDF) on 4 March 2009.
  18. JSTOR 3179569. Archived from the original
    on 29 May 2009. Retrieved 12 October 2005.
  19. John Wiley & Sons
    .
  20. ^ Industrial Organic Chemicals, Harold A. Wittcoff, Bryan G. Reuben, Jeffery S. Plotkin
  21. ^ .
  22. ^ .
  23. (PDF) on 6 October 2008.
  24. .
  25. .
  26. .
  27. .
  28. ^ Zieborak K, Olszewski K (1958). "Solubility of n-paraffins in acetic acid". Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Chimiques, Géologiques et Géographiques. 6 (2): 3315–3322.
  29. PMID 16788062
    .
  30. .
  31. .
  32. .
  33. ^ .
  34. ^ a b c d e Malveda M, Funada C (2003). "Acetic Acid". Chemicals Economic Handbook. SRI International. p. 602.5000. Archived from the original on 14 October 2011.
  35. ^ "Production report". Chemical & Engineering News: 67–76. 11 July 2005.
  36. ^ Acetic Acid Archived 23 April 2022 at the Wayback Machine. SRI Consulting.
  37. ^ Acetic Acid Market Size & Share Analysis - Growth Trends & Forecasts (2023 - 2028). Mordor Intelligence. 2023.
  38. ^ "Reportlinker Adds Global Acetic Acid Market Analysis and Forecasts". Market Research Database. June 2014. p. contents.
  39. .
  40. .
  41. .
  42. ^ .
  43. .
  44. .
  45. ^ .
  46. .
  47. ^ Hromatka O, Ebner H (1949). "Investigations on vinegar fermentation: Generator for vinegar fermentation and aeration procedures". Enzymologia. 13: 369.
  48. .
  49. ^ .
  50. ^ .
  51. .
  52. ^ Felgner A. "Determination of Water Content in Perchloric acid 0,1 mol/L in acetic acid Using Karl Fischer Titration". Sigma-Aldrich. Retrieved 27 July 2017.
  53. PMC 2310334
    .
  54. .
  55. ^ .
  56. .
  57. .
  58. ^ "Antiseptics on Wounds: An Area of Controversy". www.medscape.com. Retrieved 15 August 2016.
  59. PMID 23999348
    .
  60. .
  61. .
  62. . WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
  63. . WHO/MHP/HPS/EML/2021.02.
  64. .
  65. ^ "CPG Sec. 525.825 Vinegar, Definitions" (PDF). United States Food and Drug Administration. March 1995.
  66. ^ "Departmental Consolidation of the Food and Drugs Act and the Food and Drug Regulations – Part B – Division 19" (PDF). Health Canada. August 2018. p. 591.
  67. ^ "Commission Regulation (EU) 2016/263". Official Journal of the European Union. European Commission. February 2016.
  68. ^ Bernthsen A, Sudborough JJ (1922). Organic Chemistry. London: Blackie and Son. p. 155.
  69. .
  70. .
  71. .
  72. ^ Charlot G, Murray RG (1954). Qualitative Inorganic Analysis (4th ed.). CUP Archive. p. 110.
  73. ^ Neelakantam K, Row LR (1940). "The Lanthanum Nitrate Test for Acetatein Inorganic Qualitative Analysis" (PDF). Retrieved 5 June 2013.
  74. ISSN 0021-9584
    .
  75. ^ "Occupational Safety and Health Guideline for Acetic Acid" (PDF). Centers for Disease Control and Prevention. Archived from the original (PDF) on 8 March 2020. Retrieved 8 May 2013.
  76. ^ "ICSC 0363 – ACETIC ACID". International Programme on Chemical Safety. 5 June 2010.
  77. ^ "Standard Operating Procedure Glacial Acetic Acid" (PDF). UCMERCED. 19 October 2012. Retrieved 19 February 2024.
  78. ^ "C&L Inventory". echa.europa.eu. Retrieved 13 December 2023.

External links