Acetylserotonin O-methyltransferase

Source: Wikipedia, the free encyclopedia.
acetylserotonin O-methyltransferase
Identifiers
ExPASy
NiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins
ASMT
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_004043
NM_001171038
NM_001171039

n/a

RefSeq (protein)

NP_001164509
NP_001164510
NP_004034

n/a

Location (UCSC)Chr X: 1.62 – 1.64 Mbn/a
PubMed search[2]n/a
Wikidata
View/Edit Human

N-Acetylserotonin O-methyltransferase, also known as ASMT, is an

5-hydroxy-indoleacetate to 5-methoxy-indoleacetate. The other enzyme which catalyzes this reaction is n-acetylserotonin-o-methyltransferase-like-protein.[3]

In humans the ASMT enzyme is encoded by the

pseudoautosomal ASMT gene. A copy exists near the endcaps of the short arms of both the X chromosome and the Y chromosome.[4][5]

Structure and gene location

N-Acetylserotonin O-methyltransferase is an enzyme that is coded for by genes located on the pseudoautosomal region of the X and Y chromosome, and is most abundantly found in the pineal gland and retina of humans.[6] The structure of N- Acetylserotonin O-methyltransferase has been determined by

X-ray diffraction.[7]

Class of enzyme and function

N-Acetylserotonin O-methyltransferase can be classified under three types of enzyme functional groups: transferases, one-carbon group transferrers, and methyltransferases.[8]

It catalyzes two reactions in the tryptophan metabolism pathway, and both can be traced back to serotonin. Serotonin has many fates in this pathway, and N- Acetylserotonin O-methyltransferase catalyzes reactions in two of these fates. The enzyme has been studied most for its catalysis of the final step of the pathway from serotonin to melatonin, but it also catalyzes one of the reactions in the many step process of serotonin → 5-Methoxy-indolacetate.

Synonyms

Synonyms of N- Acetylserotonin O-methyltransferase are Hydroxyindole O-methyltransferase (HIOMT), Acetylserotonin O-methyltransferase (ASMT), Acetylserotonin N-methyltransferase, Acetylserotonin methyltransferase (Y chromosome).[8] The most commonly used synonym is Hydroxyindole O-methyltransferase (HIOMT).

Organisms

N- Acetylserotonin O-methyltransferase is found in both prokaryotes and eukaryotes. It is found in the bacteria Rhodopirellula baltica and Chromobacterium violaceum. It is also found in the following eukaryotes: Gallus gallus (chicken), Bos taurus (cow), Homo sapiens (human), Macaca mulatta (rhesus monkey), and Rattus norvegicus (rat).[8]

Amino acid sequences

Bos taurus (cattle) has 350

amino acid sequence
is:

MCSQEGEGYSLLKEYANAFMVSQVLFAACELGVFELLAEALEPLDSAAVSSHLGSSPGD RAATEHLCVPEAAASRREGRKSCVCKHGARQHLPGERQPQVPAGHAAVRGQDRLRLLAP PGEAVREGRNQYLKAFGIPSEELFSAIYRSEDERLQFMQGLQDVWRLEGATVLAAFDLS PFPLICDLGGGSGALAKACVSLYPGCRAIVFDIPGVVQIAKRHFSASEDERISFHEGDF FKDALPEADLYILARVLHDWTDAKCSHLLQRVYRACRTGGGILVIESLLDTDGRGPLTT LLYSLNMLVQTEGRERTPGRSTARSVGPAASETCGDGGRGEPTMLSWPGNQACSV

For Homo sapiens (human) with 373 amino acids[8] the sequence is:

MGSSEDQAYRLLNDYANGFMVSQVLFAACELGVFDLLAEAPGPLDVAAVAAGVRASAHG TELLLDICVSLKLLKVETRGGKAFYRNTELSSDYLTTVSPTSQCSMLKYMGRTSYRCWG HLADAVREGRNQYLETFGVPAEELFTAIYRSEGERLQFMQALQEVWSVNGRSVLTAFDL SVFPLMCDLGGTRIKLETIILSKLSQGQKTKHRVFSLIGGAGALAKECMSLYPGCKITV FDIPEVVWTAKQHFSFQEEEQIDFQEGDFFKDPLPEADLYILARVLHDWADGKCSHLLE RIYHTCKPGGGILVIESLLDEDRRGPLLTQLYSLNMLVQTEGQERTPTHYHMLLSSAGF RDFQFKKTGAIYDAILARK

Alternative splicing

The human HOIMT gene is approximately 35 kb in length and contains 9-10

isoforms, although each of these isoforms has the same role in the biosynthesis of melatonin. It has also been found that the gene contains multiple promoter regions, an indication that multiple mechanisms of regulation exist.[5]

Expression in immune cells

Recent studies found

hnRNA, suggests that Hydroxyindole O-methyltransferase (synonym for N- Acetylserotonin O-methyltransferase) plays a role in the human immune system, in addition to its endocrine and nervous system functions. In other words, the gene may be expressed in various isoforms in different cells of the body.[9]

Reactions catalyzed

In the tryptophan metabolism pathway, N- Acetylserotonin O-methyltransferase catalyzes two separate reactions. The first reaction shown (Figure 2) is the reaction of N-acetyl-serotonin to N-acetyl-5-methoxy-tryptamine. S-adenosyl-L-methionine is used as a substrate and is converted to S-adenosyl-L-homocysteine.[10] Figure 2: Reaction catalyzed by N- Acetylserotonin O-methyltransferase


Figure 3 is the same reaction as above, but the figure provides a clearer picture of how the reactant proceeds to product using N-Acetylserotonin O-methyltransferase in addition to the substrate.[8]

Figure 3: Role of N- Acetylserotonin O-methyltransferase


The second reaction (Figure 4) catalyzed by N-Acetylserotonin O-methyltransferase in the tryptophan metabolism pathway is: S-Adenosyl-L-methionine + 5-Hydroxyindoleacetate ↔ S-Adenosyl-L-homocysteine + 5-Methoxyindoleacetate.[8]

Figure 4: Second reaction catalyzed by N- Acetylserotonin O-methyltransferase


Figure 5 is a more general scheme of the reaction pathway from serotonin to melatonin. The number 2.1.1.4 refers to the Enzyme Commission Number (EC Number) for N- Acetylserotonin O-methyltransferase. These two steps are embedded in the highly involved tryptophan metabolism pathway.[11]

Figure 5: Pathway serotonin → melatonin


Clinical implications

Tumors

There is evidence of high HIOMT gene expression in pineal parenchymal tumors (PPTs). This finding has led to the study of varying gene expression as a diagnostic marker for such tumors. Abnormally high levels of HIOMT in these glands could serve as an indication of the existence of PPTs in the brain.[12]

Psychiatric disorders

Melatonin levels are used as a trait marker for mood disorders, meaning that abnormal levels of melatonin can be used in conjunction with other diagnostic criteria to determine whether a mood disorder (e.g. Seasonal affective disorder, bipolar disorder, or major depressive disorder) exists. Melatonin levels can also be used as a state marker, contributing to conclusions on the severity of a patient's illness at a given point in time. Because studies have shown a direct correlation between the amount of hydroxyindole-O-methyltransferase in the pineal gland and the melatonin level, additional knowledge of HIOMT could provide valuable insight on the nature and onset of these impairing disorders.[13]

Developmental disorders

Subjects with

autism were found to have significantly lower levels of melatonin and acetylserotonin O-methyltransferase (ASMT) than controls.[14]

Linkage analysis

High frequency polymorphism exists on the PAR region of the sex chromosomes, where the HIOMT gene is located. Linkage analysis of a diseased locus with high frequency polymorphism of this region could lead to vital information about the role of this gene in genetic disorders.[15]

Additional research

HIOMT as the limiting reagent in the melatonin biosynthetic pathway

There has been some controversy over the regulatory power of hydroxyindole-O-methyltransferase in the production of melatonin. In 2001, it was argued that another enzyme in the pathway, N-acetyl transferase (NAT) was the limiting reagent in the production of melatonin.[16] Recent findings, however, have suggested that HIOMT, not NAT, is the limiting reagent, and a direct correlation between HIOMT expression and melatonin levels has been shown to exist.[17]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000196433Ensembl, May 2017
  2. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. PMID 16381885
    . [See also comments in Thomson's website]
  4. .
  5. ^ .
  6. ^ Online Mendelian Inheritance in Man (OMIM): x-chromosomal ASMT - 300015
  7. S2CID 205836404
    .
  8. ^ a b c d e f g Enzyme 2.1.1.4 at KEGG Pathway Database.
  9. S2CID 22197004
    .
  10. .
  11. .
  12. .
  13. .
  14. ^ "Genetic studies probe sleep hormone's role in autism". 13 November 2011.
  15. PMID 8098975
    .
  16. .
  17. .

Further reading

External links