Acids in wine

Source: Wikipedia, the free encyclopedia.

Malic and tartaric acid are the primary acids in wine grapes.

The acids in wine are an important component in both

ascorbic, sorbic and sulfurous acids, are used in winemaking.[2]

Tartaric

While normally clear, tartaric crystals (pictured) can be dyed the color of the wine in which it has been saturated.

respiration like malic acid, so the levels of tartaric acid in the grape vines remain relatively consistent throughout the ripening process.[4]

Less than half of the tartaric acid found in grapes is free standing, with the majority of the concentration present as

cold stabilization, where it is exposed to temperatures below freezing to encourage the tartrates to crystallize and precipitate out of the wine,[4] or electrodialysis
which removes the tartrates via a membrane process.

Malic

Germany
will have more malic acid and green apple notes than wines from warmer regions.

Sylvaner, being naturally disposed to high levels. The levels of malic acid in grape berries are at their peak just before veraison, when they can be found in concentrations as high as 20 g/L. As the vine progresses through the ripening stage, malic acid is metabolized in the process of respiration, and by harvest, its concentration could be as low as 1 to 9 g/L. The respiratory loss of malic acid is more pronounced in warmer climates. When all the malic acid is used up in the grape, it is considered “over-ripe” or senescent. Winemakers must compensate for this loss by adding extraneous acid at the winery in a process known as acidification.[5]

Malic acid can be further reduced during the winemaking process through

monoprotic (contributes one proton), and thus has only half the effect on acidity (pH); also, the first acidity constant
(pKa) of malic acid (3.4 at room temperature) is lower than the (single) acidity constant of lactic acid (3.86 at room temperature), indicating stronger acidity. Thus after MLF, wine has a higher pH (less acidic), and a different mouthfeel.

The bacteria behind this process can be found naturally in the winery, in cooperages, which make oak wine barrels that will house a population of the bacteria or they can be introduced by the winemaker with a cultured specimen. For some wines, the conversion of malic into lactic acid can be beneficial, especially if the wine has excessive levels of malic acid. For other wines, such as Chenin blanc and Riesling, it produces off flavors in the wine (such as the buttery smell of diacetyl) that would not be appealing for that variety. In general, red wines are more often put through MLF than whites, which means a higher likelihood of finding malic acid in white wines (though notable exceptions, such as oaked Chardonnay, are often put through MLF).[5]

Lactic

Chardonnay is often put through malolactic fermentation when it is being oaked, such as via oak chips as pictured. The softer, milky lactic acid helps contribute to a creamier mouthfeel in the wine.

A much milder acid than tartaric and malic,

amines, such as histamine, tyramine and putrescine, which may be a cause of red wine headaches in some wine drinkers. Winemakers wishing to control or prevent MLF can use sulfur dioxide to stun the bacteria. Racking the wine quickly off its lees will also help control the bacteria, since lees are a vital food source for them. The winemakers must also be very careful of what wine barrels and winemaking equipment to which the wine is exposed, because of the bacteria's ability to deeply embed themselves within wood fibers. A wine barrel that has completed one successful malolactic fermentation will almost always induce MLF in every wine stored in it from then on.[6]

Citric

While very common in

fermenting sucrose solutions. These inexpensive supplements can be used by winemakers in acidification to boost the wine's total acidity. It is used less frequently than tartaric and malic due to the aggressive citric flavors it can add to the wine. When citric acid is added, it is always done after primary alcohol fermentation has been completed due to the tendency of yeast to convert citric into acetic acid. In the European Union, use of citric acid for acidification is prohibited, but limited use of citric acid is permitted for removing excess iron and copper from the wine if potassium ferrocyanide is not available.[7]

Acetic

Ascorbic

Ascorbic acid, also known as vitamin C, is found in young wine grapes prior to veraison, but is rapidly lost throughout the ripening process. In winemaking, it is used with sulfur dioxide as an antioxidant, often added during the bottling process for white wines. In the European Union, use of ascorbic acid as an additive is limited to 150 mg/L.[8]

The smell of crushed Pelargonium geranium leaves is a sign that a wine has a wine fault derived from sorbic acid.

Butyric

Butyric acid is a bacteria-induced wine fault that can cause a wine to smell of spoiled Camembert or rancid butter.[9]

Sorbic

fungi, bacteria and yeast growth. Unlike sulfur dioxide, it does not hinder the growth of the lactic acid bacteria. In the European Union, the amount of sorbic acid that can be added is limited — no more than 200 mg/L. Most humans have a detection threshold of 135 mg/L, with some having a sensitivity to detect its presence at 50 mg/L. Sorbic acid can produce off flavors and aromas which can be described as “rancid”. When lactic acid bacteria metabolize sorbates in the wine, it creates a wine fault that is most recognizable by an aroma of crushed Pelargonium geranium leaves.[10]

Succinic

byproduct of the metabolization of nitrogen by yeast cells during fermentation. The combination of succinic acid with one molecule of ethanol will create the ester ethyl succinate which contributes to a mild fruity aroma in wines.[11]

Effects

Making

A wine with high pH and low acidity like Carménère (pictured) will have more bluish color notes than a wine with high acidity.

Acidity is highest in wine grapes just before the start of

winemaking process, so grapes are often picked under-ripe and at higher acid levels.[2]

In the winemaking process, acids aid in enhancing the effectiveness of

polymerize as brown deposits.[2]

Winemakers will sometimes add acids to the wine (acidification) to make the wine more acidic, most commonly in warm climate regions where grapes are often harvested at advanced stages of ripeness with high levels of sugars, but very low levels of acid. Tartaric acid is most often added, but winemakers will sometimes add citric or malic acid. Acids can be added either before or after primary fermentation. They can be added during blending or aging, but the increased acidity will become more noticeable to wine tasters if added at this point.[2]

Tasting

The acidity in wine is an important component in the quality and taste of the wine. It adds a sharpness to the flavors and is detected most readily by a prickling sensation on the sides of the tongue and a mouth-watering aftertaste. Of particular importance is the balance of acidity versus the sweetness of the wine (the leftover residual sugar) and the more bitter components of the wine (most notably tannins but also includes other

phenolics). A wine with too much acidity will taste excessively sour and sharp. A wine with too little acidity will taste flabby and flat, with less defined flavors.[2]

See also

References

  1. . Retrieved 2009-08-04.
  2. ^
  3. ^ Comprehensive chemical study of the acidification of musts in Sherry area with calcium sulphate and tartaric acid. 39th World Congress of Vine and Wine. J. Gomez, C. Lasanta1, L. M. Cubillana-Aguilera, J. M. Palacios-Santander, R. Arnedo, J.A. Casas, B. Amilibia, and I. LLoret. (2016) [1]
  4. ^
  5. ^
  6. ^ International Sommelier October, 2003 Archived April 25, 2012, at the Wayback Machine, pg 10. Accessed 10/4/2008