Adenine phosphoribosyltransferase

Source: Wikipedia, the free encyclopedia.
APRT
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001030018
NM_000485

NM_009698

RefSeq (protein)

NP_000476
NP_001025189

NP_033828

Location (UCSC)Chr 16: 88.81 – 88.81 MbChr 8: 123.3 – 123.3 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Adenine phosphoribosyltransferase (APRTase) is an

kidney failure.[8]

CpG island
.

Function

APRTase catalyzes the following reaction in the purine nucleotide salvage pathway:

Adenine + Phosphoribosyl Pyrophosphate (PRPP) → Adenylate (AMP) + Pyrophosphate (PPi)

ARPTase catalyzes a phosphoribosyl transfer from PRPP to adenine, forming AMP and releasing pyrophosphate (PPi).

In organisms that can synthesize

purines de novo, the nucleotide salvage pathway provides an alternative that is energetically more efficient. It can salvage adenine from the polyamine biosynthetic pathway or from dietary sources of purines.[6] Although APRTase is functionally redundant in these organisms, it becomes more important during periods of rapid growth, such as embryogenesis and tumor growth.[9] It is constitutively expressed in all mammalian tissue.[10]

In

parasitic infections by targeting APRTase function.[11]

In

cytokinins—a plant hormone that can exist as a base, nucleotide, or nucleoside—into adenylate nucleotides.[12]

APRT is functionally related to hypoxanthine-guanine phosphoribosyltransferase (HPRT).

Structure

APRTase is a

homodimer, with 179 amino acid residues per monomer
. Each monomer contains the following regions:

Catalytic site of APRTase with reactants adenine and PRPP resolved. The Hood is believed to be important for purine specificity, while the flexible loop is thought to contain the molecules within the active site.
  • "Core" domain (residues 33-169) with five parallel β-sheets
  • "Hood" domain (residues 5-34) with 2 α-helices and 2 β-sheets
  • "Flexible loop" domain (residues 95-113) with 2 antiparallel β-sheets[10]
Residues A131, L159, V25, and R27 are important for purine specificity in human APRTase.

The core is highly conserved across many PRTases. The hood, which contains the

hydrophobic residue.[13]

The enzyme's specificity for adenine involves hydrophobic residues

Most research on APRTase reports that Mg2+ is essential for phosphoribosyl transfer, and this is conserved across Type I PRTases.

catalytic mechanism is dependent on this ion.[6]

Mechanism

APRTase proceeds via a bi bi ordered sequential mechanism, involving the formation of a ternary complex. The enzyme first binds PRPP, followed by adenine. After the phosphoribosyl transfer occurs, pyrophosphate leaves first, followed by AMP. Kinetic studies indicate that the phosphoribosyl transfer is relatively fast, while the product release (particularly the release of AMP) is rate-limiting.[9]

In human APRTase, it is thought that adenine's N9 proton is abstracted by

anomeric carbon of PRPP, forming AMP and displacing pyrophosphate from PRPP. The mechanism of APRTase is generally consistent with that of other PRTases, which conserve the function of displacing PRPP's α-1-pyrophosphate using a nitrogen nucleophile, in either an SN1 or SN2 attack.[6]

Deficiency

When APRTase has reduced or nonexistent activity,

ARPTase deficiency was first diagnosed in the

UK in 1976. Since then, two categories of APRTase deficiency have been defined in humans.[14]

Type I deficiency results in a complete loss of APRTase activity and can occur in patients that are

base pairs in exon 3,[16] and a single thymine insertion in intron 4.[17] These mutations cause effects that are clustered into three main areas: in the binding of PRPP's β-phosphate, in the binding of PRPP's 5'-phosphate, and in the segment of the flexible loop that closes over the active site during catalysis [10]
Type I deficiency has been observed in various ethnic groups but studied predominately among White populations.[17]

Type II deficiency causes APRTase to have a reduced affinity for PRPP, resulting in a tenfold increase in the KM value.[6] It has been observed and studied primarily in Japan.[17]

A diagnosis of APRTase deficiency can be made by analyzing

erythrocytes. It is treatable with regular doses of allopurinol or febuxostat, which inhibit xanthine dehydrogenase activity to prevent the accumulation and precipitation of DHA.[18] The condition can also be attenuated with a low-purine diet and high fluid intake.[14]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000198931 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000006589 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 24986359
    .
  6. ^ .
  7. .
  8. ^ .
  9. ^ .
  10. ^ .
  11. .
  12. ^ .
  13. .
  14. ^ .
  15. .
  16. .
  17. ^ .
  18. .

Further reading

External links