Agriculture
Agriculture |
---|
![]() |
![]() |
Agriculture encompasses crop and livestock production, aquaculture, and forestry for food and non-food products.[1] Agriculture was a key factor in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in the cities. While humans started gathering grains at least 105,000 years ago, nascent farmers only began planting them around 11,500 years ago. Sheep, goats, pigs, and cattle were domesticated around 10,000 years ago. Plants were independently cultivated in at least 11 regions of the world. In the 20th century, industrial agriculture based on large-scale monocultures came to dominate agricultural output.
As of 2021[update],
The major agricultural products can be broadly grouped into
Modern
Etymology and scope
The word agriculture is a late
History
Origins
The development of agriculture enabled the human population to grow many times larger than could be sustained by
Civilizations

In Eurasia, the
In China, from the 5th century BC, there was a nationwide

In the Americas, crops domesticated in Mesoamerica (apart from teosinte) include squash, beans, and cacao.[55] Cocoa was domesticated by the Mayo Chinchipe of the upper Amazon around 3,000 BC.[56] The
The Gunditjmara and other groups developed eel farming and fish trapping systems from some 5,000 years ago.[79] There is evidence of 'intensification' across the whole continent over that period.[80] In two regions of Australia, the central west coast and eastern central, early farmers cultivated yams, native millet, and bush onions, possibly in permanent settlements.[33][81]
Revolution
In the
Thanks to the exchange with the Al-Andalus where the Arab Agricultural Revolution was underway, European agriculture transformed, with improved techniques and the diffusion of crop plants, including the introduction of sugar, rice, cotton and fruit trees (such as the orange).[83]
After 1492, the
Modern agriculture has raised or encountered ecological, political, and economic issues including water pollution, biofuels, genetically modified organisms, tariffs and farm subsidies, leading to alternative approaches such as the organic movement.[87][88] Unsustainable farming practices in North America led to the Dust Bowl of the 1930s.[89]
Types


Pastoralism involves managing domesticated animals. In nomadic pastoralism, herds of livestock are moved from place to place in search of pasture, fodder, and water. This type of farming is practiced in arid and semi-arid regions of Sahara, Central Asia and some parts of India.[90]

In shifting cultivation, a small area of forest is cleared by cutting and burning the trees. The cleared land is used for growing crops for a few years until the soil becomes too infertile, and the area is abandoned. Another patch of land is selected and the process is repeated. This type of farming is practiced mainly in areas with abundant rainfall where the forest regenerates quickly. This practice is used in Northeast India, Southeast Asia, and the Amazon Basin.[91]
Intensive farming is cultivation to maximize productivity, with a low fallow ratio and a high use of inputs (water, fertilizer, pesticide and automation). It is practiced mainly in developed countries.[94][95]
Contemporary agriculture
Status


From the twentieth century onwards, intensive agriculture increased crop productivity. It substituted synthetic fertilizers and pesticides for labor, but caused increased water pollution, and often involved farm subsidies.

By 2015, the agricultural output of China was the largest in the world, followed by the European Union, India and the United States.[106] Economists measure the total factor productivity of agriculture, according to which agriculture in the United States is roughly 1.7 times more productive than it was in 1948.[107]
Agriculture employed 873 million people in 2021, or 27% of the global workforce, compared with 1 027 million (or 40%) in 2000. The share of agriculture in global GDP was stable at around 4% since 2000–2023.[108]
Despite increases in agricultural production and productivity,[109] between 702 and 828 million people were affected by hunger in 2021.[110] Food insecurity and malnutrition can be the result of conflict, climate extremes and variability and economic swings.[109] It can also be caused by a country's structural characteristics such as income status and natural resource endowments as well as its political economy.[109]
Pesticide use in agriculture went up 62% between 2000 and 2021, with the Americas accounting for half the use in 2021.[108]
The International Fund for Agricultural Development posits that an increase in smallholder agriculture may be part of the solution to concerns about food prices and overall food security, given the favorable experience of Vietnam.[111]
Workforce

Agriculture provides about one-quarter of all global employment, more than half in sub-Saharan Africa and almost 60 percent in low-income countries. During the 16th century in Europe, between 55 and 75% of the population was engaged in agriculture; by the 19th century, this had dropped to between 35 and 65%.[118] In the same countries today, the figure is less than 10%.[119]
At the start of the 21st century, some one billion people, or over 1/3 of the available work force, were employed in agriculture. This constitutes approximately 70% of the global employment of children, and in many countries constitutes the largest percentage of women of any industry.[120] The service sector overtook the agricultural sector as the largest global employer in 2007.[121]
In many developed countries, immigrants help fill labor shortages in high-value agriculture activities that are difficult to mechanize.[122] Foreign farm workers from mostly Eastern Europe, North Africa and South Asia constituted around one-third of the salaried agricultural workforce in Spain, Italy, Greece and Portugal in 2013.[123][124][125][126] In the United States of America, more than half of all hired farmworkers (roughly 450,000 workers) were immigrants in 2019, although the number of new immigrants arriving in the country to work in agriculture has fallen by 75 percent in recent years and rising wages indicate this has led to a major labor shortage on U.S. farms.[127][128]
Around the world, women make up a large share of the population employed in agriculture.[129] This share is growing in all developing regions except East and Southeast Asia where women already make up about 50 percent of the agricultural workforce.[129] Women make up 47 percent of the agricultural workforce in sub-Saharan Africa, a rate that has not changed significantly in the past few decades.[129] However, the Food and Agriculture Organization of the United Nations (FAO) posits that the roles and responsibilities of women in agriculture may be changing – for example, from subsistence farming to wage employment, and from contributing household members to primary producers in the context of male-out-migration.[129]
In general, women account for a greater share of agricultural employment at lower levels of economic development, as inadequate education, limited access to basic infrastructure and markets, high unpaid work burden and poor rural employment opportunities outside agriculture severely limit women's opportunities for off-farm work.[130]
Women who work in agricultural production tend to do so under highly unfavorable conditions. They tend to be concentrated in the poorest countries, where alternative livelihoods are not available, and they maintain the intensity of their work in conditions of climate-induced weather shocks and in situations of conflict. Women are less likely to participate as entrepreneurs and independent farmers and are engaged in the production of less lucrative crops.[130]
The gender gap in land productivity between female- and male managed farms of the same size is 24 percent. On average, women earn 18.4 percent less than men in wage employment in agriculture; this means that women receive 82 cents for every dollar earned by men. Progress has been slow in closing gaps in women's access to irrigation and in ownership of livestock, too.[130]
Women in agriculture still have significantly less access than men to inputs, including improved seeds, fertilizers and mechanized equipment. On a positive note, the gender gap in access to mobile internet in low- and middle-income countries fell from 25 percent to 16 percent between 2017 and 2021, and the gender gap in access to bank accounts narrowed from 9 to 6 percentage points. Women are as likely as men to adopt new technologies when the necessary enabling factors are put in place and they have equal access to complementary resources.[130]
Agriculture, specifically farming, remains a hazardous industry, and farmers worldwide remain at high risk of work-related injuries, lung disease, noise-induced hearing loss, skin diseases, as well as certain cancers related to chemical use and prolonged sun exposure. On industrialized farms, injuries frequently involve the use of agricultural machinery, and a common cause of fatal agricultural injuries in developed countries is tractor rollovers.[131] Pesticides and other chemicals used in farming can be hazardous to worker health, and workers exposed to pesticides may experience illness or have children with birth defects.[132] As an industry in which families commonly share in work and live on the farm itself, entire families can be at risk for injuries, illness, and death.[133] Ages 0–6 may be an especially vulnerable population in agriculture;[134] common causes of fatal injuries among young farm workers include drowning, machinery and motor accidents, including with all-terrain vehicles.[133][134][135]
The International Labor Organization considers agriculture "one of the most hazardous of all economic sectors".[120] It estimates that the annual work-related death toll among agricultural employees is at least 170,000, twice the average rate of other jobs. In addition, incidences of death, injury and illness related to agricultural activities often go unreported.[136] The organization has developed the Safety and Health in Agriculture Convention, 2001, which covers the range of risks in the agriculture occupation, the prevention of these risks and the role that individuals and organizations engaged in agriculture should play.[120]
In the United States, agriculture has been identified by the National Institute for Occupational Safety and Health as a priority industry sector in the National Occupational Research Agenda to identify and provide intervention strategies for occupational health and safety issues.[137][138]
In the European Union, the European Agency for Safety and Health at Work has issued guidelines on implementing health and safety directives in agriculture, livestock farming, horticulture, and forestry.[139] The Agricultural Safety and Health Council of America (ASHCA) also holds a yearly summit to discuss safety.[140]
Overall production varies by country as listed.
The twenty largest countries by agricultural output (in nominal terms) at peak level as of 2018, according to the Cropping systems vary among farms depending on the available resources and constraints; geography and climate of the farm; government policy; economic, social and political pressures; and the philosophy and culture of the farmer.[142][143]
Shifting cultivation (or Women in agriculture
Safety
Production
Largest countries by agricultural output (in nominal terms) according to
Economy
Countries by agricultural output (in nominal terms) at peak level as of 2018 (billions in USD
(01)
China
(02)
India
(—)
European Union
(03)
United States
(04)
Brazil
(05)
Indonesia
(06)
Nigeria
(07)
Russia
(08)
Pakistan
(09)
Argentina
(10)
Turkey
(11)
Japan
(12)
France
(13)
Iran
(14)
Australia
(15)
Mexico
(16)
Italy
(17)
Spain
(18)
Bangladesh
(19)
Thailand
(20)
Egypt
Largest countries by agricultural output according to
Economy
Countries by agricultural output in 2015 (millions in 2005 constant USD and exchange rates)
(01)
China
(02)
India
(03)
United States
(04)
Nigeria
(05)
Brazil
Crop cultivation systems

Further industrialization led to the use of monocultures, when one cultivar is planted on a large acreage. Because of the low biodiversity, nutrient use is uniform and pests tend to build up, necessitating the greater use of pesticides and fertilizers.[143] Multiple cropping, in which several crops are grown sequentially in one year, and intercropping, when several crops are grown at the same time, are other kinds of annual cropping systems known as polycultures.[144]
In
Important categories of food crops include cereals, legumes, forage, fruits and vegetables.[145] Natural fibers include cotton, wool, hemp, silk and flax.[146] Specific crops are cultivated in distinct growing regions throughout the world. Production is listed in millions of metric tons, based on FAO estimates.[145]
Top agricultural products, by crop types (million tonnes) 2004 data | |
---|---|
Cereals | 2,263 |
Vegetables and melons | 866 |
Roots and tubers | 715 |
Milk | 619 |
Fruit | 503 |
Meat | 259 |
Oilcrops | 133 |
Fish (2001 estimate) | 130 |
Eggs |
63 |
Pulses |
60 |
Vegetable fiber | 30 |
Source: Food and Agriculture Organization[145] |
Top agricultural products, by individual crops (million tonnes) 2011 data | |
---|---|
Sugar cane | 1794 |
Maize | 883 |
Rice | 722 |
Wheat | 704 |
Potatoes | 374 |
Sugar beet | 271 |
Soybeans | 260 |
Cassava | 252 |
Tomatoes | 159 |
Barley | 134 |
Source: Food and Agriculture Organization[145] |
Livestock production systems

Animal husbandry is the breeding and raising of animals for meat, milk,
Livestock production systems can be defined based on feed source, as grassland-based, mixed, and landless.[149] As of 2010[update], 30% of Earth's ice- and water-free area was used for producing livestock, with the sector employing approximately 1.3 billion people. Between the 1960s and the 2000s, there was a significant increase in livestock production, both by numbers and by carcass weight, especially among beef, pigs and chickens, the latter of which had production increased by almost a factor of 10. Non-meat animals, such as milk cows and egg-producing chickens, also showed significant production increases. Global cattle, sheep and goat populations are expected to continue to increase sharply through 2050.[150] Aquaculture or fish farming, the production of fish for human consumption in confined operations, is one of the fastest growing sectors of food production, growing at an average of 9% a year between 1975 and 2007.[151]
During the second half of the 20th century, producers using selective breeding focused on creating livestock breeds and crossbreeds that increased production, while mostly disregarding the need to preserve genetic diversity. This trend has led to a significant decrease in genetic diversity and resources among livestock breeds, leading to a corresponding decrease in disease resistance and local adaptations previously found among traditional breeds.[152]

Grassland based livestock production relies upon plant material such as
Landless systems rely upon feed from outside the farm, representing the de-linking of crop and livestock production found more prevalently in
Production practices

Tillage is the practice of breaking up the soil with tools such as the plow or harrow to prepare for planting, for nutrient incorporation, or for pest control. Tillage varies in intensity from conventional to no-till. It can improve productivity by warming the soil, incorporating fertilizer and controlling weeds, but also renders soil more prone to erosion, triggers the decomposition of organic matter releasing CO2, and reduces the abundance and diversity of soil organisms.[154][155]
Pest control includes the management of weeds, insects,
Nutrient management includes both the source of nutrient inputs for crop and livestock production, and the method of use of manure produced by livestock. Nutrient inputs can be chemical inorganic fertilizers, manure, green manure, compost and minerals.[157] Crop nutrient use may also be managed using cultural techniques such as crop rotation or a fallow period. Manure is used either by holding livestock where the feed crop is growing, such as in managed intensive rotational grazing, or by spreading either dry or liquid formulations of manure on cropland or pastures.[154][158]
According to 2014 report by the International Food Policy Research Institute, agricultural technologies will have the greatest impact on food production if adopted in combination with each other. Using a model that assessed how eleven technologies could impact agricultural productivity, food security and trade by 2050, the International Food Policy Research Institute found that the number of people at risk from hunger could be reduced by as much as 40% and food prices could be reduced by almost half.[163]
Payment for ecosystem services is a method of providing additional incentives to encourage farmers to conserve some aspects of the environment. Measures might include paying for reforestation upstream of a city, to improve the supply of fresh water.[164]
Agricultural automation
Different definitions exist for agricultural automation and for the variety of tools and technologies that are used to automate production. One view is that agricultural automation refers to autonomous navigation by robots without human intervention.[165] Alternatively, it is defined as the accomplishment of production tasks through mobile, autonomous, decision-making, mechatronic devices.[166] However, FAO finds that these definitions do not capture all the aspects and forms of automation, such as robotic milking machines that are static, most motorized machinery that automates the performing of agricultural operations, and digital tools (e.g., sensors) that automate only diagnosis.[160] FAO defines agricultural automation as the use of machinery and equipment in agricultural operations to improve their diagnosis, decision-making or performing, reducing the drudgery of agricultural work or improving the timeliness, and potentially the precision, of agricultural operations.[167]
The technological evolution in agriculture has involved a progressive move from manual tools to animal traction, to motorized mechanization, to digital equipment and finally, to robotics with artificial intelligence (AI).[167] Motorized mechanization using engine power automates the performance of agricultural operations such as ploughing and milking.[168] With digital automation technologies, it also becomes possible to automate diagnosis and decision-making of agricultural operations.[167] For example, autonomous crop robots can harvest and seed crops, while drones can gather information to help automate input application.[160] Precision agriculture often employs such automation technologies.[160] Motorized machines are increasingly complemented, or even superseded, by new digital equipment that automates diagnosis and decision-making.[168] A conventional tractor, for example, can be converted into an automated vehicle allowing it to sow a field autonomously.[168]
Motorized mechanization has increased significantly across the world in recent years, although reliable global data with broad country coverage exist only for tractors and only up to 2009.[169] Sub-Saharan Africa is the only region where the adoption of motorized mechanization has stalled over the past decades.[160][170]
Automation technologies are increasingly used for managing livestock, though evidence on adoption is lacking. Global automatic milking system sales have increased over recent years, but adoption is likely mostly in Northern Europe,[171] and likely almost absent in low- and middle-income countries. Automated feeding machines for both cows and poultry also exist, but data and evidence regarding their adoption trends and drivers is likewise scarce.[172][160]
Measuring the overall employment impacts of agricultural automation is difficult because it requires large amounts of data tracking all the transformations and the associated reallocation of workers both upstream and downstream.[167] While automation technologies reduce labor needs for the newly automated tasks, they also generate new labor demand for other tasks, such as equipment maintenance and operation.[160] Agricultural automation can also stimulate employment by allowing producers to expand production and by creating other agrifood systems jobs.[173] This is especially true when it happens in context of rising scarcity of rural labor, as is the case in high-income countries and many middle-income countries.[173] On the other hand, if forcedly promoted, for example through government subsidies in contexts of abundant rural labor, it can lead to labor displacement and falling or stagnant wages, particularly affecting poor and low-skilled workers.[173]
Effects of climate change on yields

In a 2022 report, the
Crop alteration and biotechnology
Plant breeding

Crop alteration has been practiced by humankind for thousands of years, since the beginning of civilization. Altering crops through breeding practices changes the genetic make-up of a plant to develop crops with more beneficial characteristics for humans, for example, larger fruits or seeds, drought-tolerance, or resistance to pests. Significant advances in plant breeding ensued after the work of geneticist
Domestication of plants has, over the centuries increased yield, improved disease resistance and drought tolerance, eased harvest and improved the taste and nutritional value of crop plants. Careful selection and breeding have had enormous effects on the characteristics of crop plants. Plant selection and breeding in the 1920s and 1930s improved pasture (grasses and clover) in New Zealand. Extensive X-ray and ultraviolet induced mutagenesis efforts (i.e. primitive genetic engineering) during the 1950s produced the modern commercial varieties of grains such as wheat, corn (maize) and barley.[180][181]

The Green Revolution popularized the use of conventional hybridization to sharply increase yield by creating "high-yielding varieties". For example, average yields of corn (maize) in the US have increased from around 2.5 tons per hectare (t/ha) (40 bushels per acre) in 1900 to about 9.4 t/ha (150 bushels per acre) in 2001. Similarly, worldwide average wheat yields have increased from less than 1 t/ha in 1900 to more than 2.5 t/ha in 1990. South American average wheat yields are around 2 t/ha, African under 1 t/ha, and Egypt and Arabia up to 3.5 to 4 t/ha with irrigation. In contrast, the average wheat yield in countries such as France is over 8 t/ha. Variations in yields are due mainly to variation in climate, genetics, and the level of intensive farming techniques (use of fertilizers, chemical pest control, and growth control to avoid lodging).[182][183][184]

Investments into innovation for agriculture are long term. This is because it takes time for research to become commercialized and for technology to be adapted to meet multiple regions’ needs, as well as meet national guidelines before being adopted and planted in a farmer's fields. For instance, it took at least 60 years from the introduction of hybrid corn technology before its adoption became widespread.[185][186]
Agricultural innovation developed for the specific agroecological conditions of one region is not easily transferred and used in another region with different agroecological conditions. Instead, the innovation would have to be adapted to the specific conditions of that other region and respect its biodiversity and environmental requirements and guidelines. Some such adaptations can be seen through the steadily increasing number of plant varieties protected under the plant variety protection instrument administered by the International Union for the Protection of New Varieties of Plants (UPOV).[185]
Genetic engineering

Genetically modified organisms (GMO) are
Herbicide-resistant seeds have a gene implanted into their genome that allows the plants to tolerate exposure to herbicides, including glyphosate. These seeds allow the farmer to grow a crop that can be sprayed with herbicides to control weeds without harming the resistant crop. Herbicide-tolerant crops are used by farmers worldwide.[190] With the increasing use of herbicide-tolerant crops, comes an increase in the use of glyphosate-based herbicide sprays. In some areas glyphosate resistant weeds have developed, causing farmers to switch to other herbicides.[191][192] Some studies also link widespread glyphosate usage to iron deficiencies in some crops, which is both a crop production and a nutritional quality concern, with potential economic and health implications.[193]
Other GMO crops used by growers include insect-resistant crops, which have a gene from the soil bacterium Bacillus thuringiensis (Bt), which produces a toxin specific to insects. These crops resist damage by insects.[194] Some believe that similar or better pest-resistance traits can be acquired through traditional breeding practices, and resistance to various pests can be gained through hybridization or cross-pollination with wild species. In some cases, wild species are the primary source of resistance traits; some tomato cultivars that have gained resistance to at least 19 diseases did so through crossing with wild populations of tomatoes.[195]
Environmental impact
Effects and costs
Agriculture is both a cause of and sensitive to
Agriculture imposes multiple external costs upon society through effects such as pesticide damage to nature (especially herbicides and insecticides), nutrient runoff, excessive water usage, and loss of natural environment. A 2000 assessment of agriculture in the UK determined total external costs for 1996 of £2,343 million, or £208 per hectare.[200] A 2005 analysis of these costs in the US concluded that cropland imposes approximately $5 to $16 billion ($30 to $96 per hectare), while livestock production imposes $714 million.[201] Both studies, which focused solely on the fiscal impacts, concluded that more should be done to internalize external costs. Neither included subsidies in their analysis, but they noted that subsidies also influence the cost of agriculture to society.[200][201]
Agriculture seeks to increase yield and to reduce costs, often employing measures that cut biodiversity to very low levels. Yield increases with inputs such as fertilizers and removal of pathogens, predators, and competitors (such as weeds). Costs decrease with increasing scale of farm units, such as making fields larger; this means removing hedges, ditches and other areas of habitat. Pesticides kill insects, plants and fungi. Effective yields fall with on-farm losses, which may be caused by poor production practices during harvesting, handling, and storage.[202]
The environmental effects of climate change show that research on pests and diseases that do not generally afflict areas is essential. In 2021, farmers discovered stem rust on wheat in the Champagne area of France, a disease that had previously only occurred in Morocco for 20 to 30 years. Because of climate change, insects that used to die off over the winter are now alive and multiplying.[203][204]
Livestock issues
A senior UN official, Henning Steinfeld, said that "Livestock are one of the most significant contributors to today's most serious environmental problems".
Land and water issues

Land transformation, the use of land to yield goods and services, is the most substantial way humans alter the Earth's ecosystems, and is the driving force causing biodiversity loss. Estimates of the amount of land transformed by humans vary from 39 to 50%.[208] It is estimated that 24% of land globally experiences land degradation, a long-term decline in ecosystem function and productivity, with cropland being disproportionately affected.[209] Land management is the driving factor behind degradation; 1.5 billion people rely upon the degrading land. Degradation can be through deforestation, desertification, soil erosion, mineral depletion, acidification, or salinization.[144] In 2021, the global agricultural land area was 4.79 billion hectares (ha), down 2 percent, or 0.09 billion ha compared with 2000. Between 2000 and 2021, roughly two-thirds of agricultural land were used for permanent meadows and pastures (3.21 billion ha in 2021), which declined by 5 percent (0.17 billion ha). One-third of the total agricultural land was cropland (1.58 billion ha in 2021), which increased by 6 percent (0.09 billion ha).[108]
Agriculture simultaneously is facing growing freshwater demand and precipitation anomalies (droughts, floods, and extreme rainfall and weather events) on rainfed areas fields and grazing lands.[162] Agriculture accounts for 70 percent of withdrawals of freshwater resources,[212][213] and an estimated 41 percent of current global irrigation water use occurs at the expense of environmental flow requirements.[162] It is long known that aquifers in areas as diverse as northern China, the Upper Ganges and the western US are being depleted, and new research extends these problems to aquifers in Iran, Mexico and Saudi Arabia.[214] Increasing pressure is being placed on water resources by industry and urban areas, meaning that water scarcity is increasing and agriculture is facing the challenge of producing more food for the world's growing population with reduced water resources.[215] While industrial withdrawals have declined in the past few decades and municipal withdrawals have increased only marginally since 2010, agricultural withdrawals have continued to grow at an ever faster pace.[162] Agricultural water usage can also cause major environmental problems, including the destruction of natural wetlands, the spread of water-borne diseases, and land degradation through salinization and waterlogging, when irrigation is performed incorrectly.[216]
Pesticides

Pesticide use has increased since 1950 to 2.5 million short tons annually worldwide, yet crop loss from pests has remained relatively constant.[217] The World Health Organization estimated in 1992 that three million pesticide poisonings occur annually, causing 220,000 deaths.[218] Pesticides select for pesticide resistance in the pest population, leading to a condition termed the "pesticide treadmill" in which pest resistance warrants the development of a new pesticide.[219]
An alternative argument is that the way to "save the environment" and prevent famine is by using pesticides and intensive high yield farming, a view exemplified by a quote heading the Center for Global Food Issues website: 'Growing more per acre leaves more land for nature'.
Contribution to climate change

Agriculture contributes towards climate change through greenhouse gas emissions and by the conversion of non-agricultural land such as forests into agricultural land.[224] The agriculture, forestry and land use sector contribute between 13% and 21% of global greenhouse gas emissions.[225] Emissions of nitrous oxide, methane make up over half of total greenhouse gas emission from agriculture.[226] Animal husbandry is a major source of greenhouse gas emissions.[227]
Approximately 57% of global GHG emissions from the production of food are from the production of animal-based food while plant-based foods contribute 29% and the remaining 14% is for other utilizations.
Sustainability
Current farming methods have resulted in over-stretched water resources, high levels of erosion and reduced soil fertility. There is not enough water to continue farming using current practices; therefore how water, land, and ecosystem resources are used to boost crop yields must be reconsidered. A solution would be to give value to ecosystems, recognizing environmental and livelihood tradeoffs, and balancing the rights of a variety of users and interests.[229] Inequities that result when such measures are adopted would need to be addressed, such as the reallocation of water from poor to rich, the clearing of land to make way for more productive farmland, or the preservation of a wetland system that limits fishing rights.[230]
Technological advancements help provide farmers with tools and resources to make farming more sustainable.
Agricultural automation can help address some of the challenges associated with climate change and thus facilitate adaptation efforts.[160] For example, the application of digital automation technologies (e.g. in precision agriculture) can improve resource-use efficiency in conditions which are increasingly constrained for agricultural producers.[160] Moreover, when applied to sensing and early warning, they can help address the uncertainty and unpredictability of weather conditions associated with accelerating climate change.[160]
Other potential sustainable practices include conservation agriculture, agroforestry, improved grazing, avoided grassland conversion, and biochar.[233][234] Current mono-crop farming practices in the United States preclude widespread adoption of sustainable practices, such as 2–3 crop rotations that incorporate grass or hay with annual crops, unless negative emission goals such as soil carbon sequestration become policy.[235]
The food demand of Earth's projected population, with current climate change predictions, could be satisfied by improvement of agricultural methods, expansion of agricultural areas, and a sustainability-oriented consumer mindset.[236]
Energy dependence

Since the 1940s, agricultural productivity has increased dramatically, due largely to the increased use of energy-intensive mechanization, fertilizers and pesticides. The vast majority of this energy input comes from fossil fuel sources.[237] Between the 1960s and the 1980s, the Green Revolution transformed agriculture around the globe, with world grain production increasing significantly (between 70% and 390% for wheat and 60% to 150% for rice, depending on geographic area)[238] as world population doubled. Heavy reliance on petrochemicals has raised concerns that oil shortages could increase costs and reduce agricultural output.[239]
Industrialized agriculture depends on
Indirect consumption includes the manufacture of fertilizers, pesticides, and farm machinery.
Plastic pollution
Plastic products are used extensively in agriculture, including to increase crop yields and improve the efficiency of water and agrichemical use. "Agriplastic" products include films to cover greenhouses and tunnels, mulch to cover soil (e.g. to suppress weeds, conserve water, increase soil temperature and aid fertilizer application), shade cloth, pesticide containers, seedling trays, protective mesh and irrigation tubing. The polymers most commonly used in these products are low- density polyethylene (LPDE), linear low-density polyethylene (LLDPE), polypropylene (PP) and polyvinyl chloride (PVC).[243]
The total amount of plastics used in agriculture is difficult to quantify. A 2012 study reported that almost 6.5 million tonnes per year were consumed globally while a later study estimated that global demand in 2015 was between 7.3 million and 9 million tonnes. Widespread use of plastic mulch and lack of systematic collection and management have led to the generation of large amounts of mulch residue. Weathering and degradation eventually cause the mulch to fragment. These fragments and larger pieces of plastic accumulate in soil. Mulch residue has been measured at levels of 50 to 260 kg per hectare in topsoil in areas where mulch use dates back more than 10 years, which confirms that mulching is a major source of both microplastic and macroplastic soil contamination.[243]
Agricultural plastics, especially plastic films, are not easy to recycle because of high contamination levels (up to 40–50% by weight contamination by pesticides, fertilizers, soil and debris, moist vegetation, silage juice water, and UV stabilizers) and collection difficulties . Therefore, they are often buried or abandoned in fields and watercourses or burned. These disposal practices lead to soil degradation and can result in contamination of soils and leakage of microplastics into the marine environment as a result of precipitation run-off and tidal washing. In addition, additives in residual plastic film (such as UV and thermal stabilizers) may have deleterious effects on crop growth, soil structure, nutrient transport and salt levels. There is a risk that plastic mulch will deteriorate soil quality, deplete soil organic matter stocks, increase soil water repellence and emit greenhouse gases. Microplastics released through fragmentation of agricultural plastics can absorb and concentrate contaminants capable of being passed up the trophic chain.[243]
Disciplines
Agricultural economics
Agricultural economics is economics as it relates to the "production, distribution and consumption of [agricultural] goods and services".
National government policies, such as taxation,
However, as of 2009[update], there was still a significant amount of policy-driven distortion in global agricultural product prices. The three agricultural products with the most trade distortion were sugar, milk and rice, mainly due to taxation. Among the
Agricultural science

Agricultural science is a broad multidisciplinary field of biology that encompasses the parts of exact, natural, economic and social sciences used in the practice and understanding of agriculture. It covers topics such as agronomy, plant breeding and genetics, plant pathology, crop modeling, soil science, entomology, production techniques and improvement, study of pests and their management, and study of adverse environmental effects such as soil degradation, waste management, and bioremediation.[254][255]
The scientific study of agriculture began in the 18th century, when
Policy
Product | Subsidy |
---|---|
Beef and veal | 18.0 |
Milk | 15.3 |
Pigs | 7.3 |
Poultry | 6.5 |
Soybeans | 2.3 |
Eggs | 1.5 |
Sheep | 1.1 |
A 2021 report finds that globally, support to agricultural producers accounts for almost US$540 billion a year.[266] This amounts to 15 percent of total agricultural production value, and is heavily biased towards measures that are leading to inefficiency, as well as are unequally distributed and harmful for the environment and human health.[266]
There are many influences on the creation of agricultural policy, including consumers,
See also
- Aeroponics
- Agricultural aircraft
- Agricultural engineering
- Agricultural finance
- Agricultural robot
- Agroecology
- Agrominerals
- Building-integrated agriculture
- Contract farming
- Corporate farming
- Crofting
- Ecoagriculture
- Farmworker
- Food loss and waste
- Food security
- Hill farming
- List of documentary films about agriculture
- Pharming (genetics)
- Remote sensing
- Rural Development
- Soil biodiversity
- Subsistence economy
- Sustainable agriculture
- Urban agriculture
- Vertical farming
- Vegetable farming
References
- from the original on 13 April 2023. Retrieved 3 February 2023.
- ^ S2CID 233553897.
- ^ "FAOSTAT. New Food Balance Sheets". Food and Agriculture Organization. Archived from the original on 4 January 2024. Retrieved 12 July 2021.
- ^ "Discover Natural Fibres Initiative – DNFI.org". dnfi.org. Archived from the original on 10 April 2023. Retrieved 3 February 2023.
- ^ "FAOSTAT. Forestry Production and Trade". Food and Agriculture Organization. Archived from the original on 4 January 2024. Retrieved 12 July 2021.
- ISBN 978-92-5-137588-4. Archivedfrom the original on 27 September 2023. Retrieved 4 January 2024.
- ISBN 978-0-19-863121-7.
- ^ St. Fleur, Nicholas (6 October 2018). "An Ancient Ant-Bacteria Partnership to Protect Fungus". The New York Times. Archived from the original on 1 January 2022. Retrieved 14 July 2020.
- PMID 30282739.
- .
- ^ a b "Definition of Agriculture". State of Maine. Archived from the original on 23 March 2012. Retrieved 6 May 2013.
- S2CID 85571333.
- ISBN 978-1-133-41722-4. Archivedfrom the original on 31 May 2022. Retrieved 1 May 2022.
- ^ PMID 24757054.
- S2CID 10644185.
- S2CID 29655920.
- S2CID 201674203.
- ^ Harmon, Katherine (17 December 2009). "Humans feasting on grains for at least 100,000 years". Scientific American. Archived from the original on 17 September 2016. Retrieved 28 August 2016.
- PMID 26200895.
- ^ "First evidence of farming in Mideast 23,000 years ago: Evidence of earliest small-scale agricultural cultivation". ScienceDaily. Archived from the original on 23 April 2022. Retrieved 23 April 2022.
- S2CID 4426729.
- ISBN 978-0-8134-2464-4.
- PMID 23530234.
- S2CID 39923483.
- PMID 17855556.
- ISBN 978-0-87451-649-4. Archivedfrom the original on 10 February 2018. Retrieved 10 February 2019.
- ^ "The Evolution of Corn". University of Utah HEALTH SCIENCES. Archived from the original on 13 July 2019. Retrieved 2 January 2016.
- PMID 11172083.
- ^ Johannessen, S.; Hastorf, C. A. (eds.) Corn and Culture in the Prehistoric New World, Westview Press, Boulder, Colorado.
- from the original on 29 September 2022. Retrieved 28 October 2022.
- ISBN 9781857285383
- ^ Sato, Y. (2003) "Origin of rice cultivation in the Yangtze River basin". In Y. Yasuda (ed.) The Origins of Pottery and Agriculture, Roli Books, New Delhi, p. 196
- ^ S2CID 129339276.
- S2CID 13350469.
- ^ "When the First Farmers Arrived in Europe, Inequality Evolved". Scientific American. 1 July 2020. Archived from the original on 25 May 2022. Retrieved 28 October 2022.
- ^ "Farming". British Museum. Archived from the original on 16 June 2016. Retrieved 15 June 2016.
- ^ Janick, Jules. "Ancient Egyptian Agriculture and the Origins of Horticulture" (PDF). Acta Hort. 583: 23–39. Archived (PDF) from the original on 25 May 2013. Retrieved 1 April 2018.
- ISBN 978-0226429144.
- (PDF) from the original on 20 January 2019. Retrieved 23 April 2019.
- ISBN 0-7914-2919-9.
- ISBN 1-85728-538-7.
- ^ Possehl, Gregory L. (1996). Mehrgarh in Oxford Companion to Archaeology, Ed. Brian Fagan. Oxford University Press.
- ISBN 0-631-20546-2.
- .
- ^ Needham, Vol. 6, Part 2, pp. 55–57.
- ^ Needham, Vol. 4, Part 2, pp. 89, 110, 184.
- ^ Needham, Vol. 4, Part 2, p. 110.
- ISBN 1404205586
- ^ Wang Zhongshu, trans. by K. C. Chang and Collaborators, Han Civilization (New Haven and London: Yale University Press, 1982).
- ISBN 978-0-415-96930-7. Archivedfrom the original on 13 April 2023. Retrieved 10 February 2019.
- PMID 21536870.
- PMID 23034647.
- ISBN 3-11-014693-2
- ^ White, K. D. (1970), Roman Farming. Cornell University Press.
- ^ ISBN 978-1-84593-913-7. Archivedfrom the original on 13 April 2023. Retrieved 10 February 2019.
- ^ Davis, Nicola (29 October 2018). "Origin of chocolate shifts 1,400 miles and 1,500 years". The Guardian. Archived from the original on 30 October 2018. Retrieved 31 October 2018.
- PMID 20133614.
- from the original on 23 April 2021. Retrieved 17 May 2013.
- doi:10.2136/sh2012-53-6-lf (inactive 1 November 2024).)
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link - PMID 16203994.
- ISBN 978-0-309-04264-2. Archivedfrom the original on 2 December 2012. Retrieved 1 April 2018 – via National Academies.org.
- ISBN 978-1-85109-426-4. Archivedfrom the original on 13 April 2023. Retrieved 10 February 2019.
- from the original on 19 October 2021. Retrieved 16 November 2023.
- ISBN 978-0-87451-649-4. Archivedfrom the original on 13 April 2023. Retrieved 10 February 2019.
- ISBN 978-92-5-105762-9.
- S2CID 144433864.
- ISBN 978-0-915703-01-2.
- ^ Adair, Mary J. (1988) Prehistoric Agriculture in the Central Plains. Publications in Anthropology 16. University of Kansas, Lawrence.
- ISBN 978-0-19-973496-2. Retrieved 10 February 2019.
- ^ Hardigan, Michael A. "P0653: Domestication History of Strawberry: Population Bottlenecks and Restructuring of Genetic Diversity through Time". Pland & Animal Genome Conference XXVI 13–17 January 2018 San Diego, California. Archived from the original on 1 March 2018. Retrieved 28 February 2018.
- ISBN 978-0-520-24605-8.
- ISBN 978-0-87919-126-9.
- ISBN 978-1-59714-136-9.
- ISBN 978-0-520-24851-9.
- ISBN 978-1-4099-4233-7. Archived from the originalon 14 March 2016.
- ^ Landon, Amanda J. (2008). "The "How" of the Three Sisters: The Origins of Agriculture in Mesoamerica and the Human Niche". Nebraska Anthropologist: 110–124. Archived from the original on 21 September 2013. Retrieved 1 April 2018.
- .
- PMID 21320899.
- ^ Williams, Elizabeth (1988). "Complex Hunter-Gatherers: A Late Holocene Example from Temperate Australia". Archaeopress Archaeology. 423.
- ^ Lourandos, Harry (1997). Continent of Hunter-Gatherers: New Perspectives in Australian Prehistory. Cambridge University Press.
- ISBN 978-1-74237-748-3. Archivedfrom the original on 13 April 2023. Retrieved 18 February 2019.
- ISBN 978-1-4262-1609-1. Archivedfrom the original on 13 April 2023. Retrieved 10 February 2019.
- S2CID 154359726.
- ^ Crosby, Alfred. "The Columbian Exchange". The Gilder Lehrman Institute of American History. Archived from the original on 3 July 2013. Retrieved 11 May 2013.
- ^ Janick, Jules. "Agricultural Scientific Revolution: Mechanical" (PDF). Purdue University. Archived (PDF) from the original on 25 May 2013. Retrieved 24 May 2013.
- ^ Reid, John F. (2011). "The Impact of Mechanization on Agriculture". The Bridge on Agriculture and Information Technology. 41 (3). Archived from the original on 5 November 2013.
- ^ a b Philpott, Tom (19 April 2013). "A Brief History of Our Deadly Addiction to Nitrogen Fertilizer". Mother Jones. Archived from the original on 5 May 2013. Retrieved 7 May 2013.
- ^ "Ten worst famines of the 20th century". Sydney Morning Herald. 15 August 2011. Archived from the original on 3 July 2014.
- PMID 17720669.
- ^ Blench, Roger (2001). Pastoralists in the new millennium (PDF). FAO. pp. 11–12. Archived (PDF) from the original on 1 February 2012.
- ^ "Shifting cultivation". Survival International. Archived from the original on 29 August 2016. Retrieved 28 August 2016.
- ^ Waters, Tony (2007). The Persistence of Subsistence Agriculture: life beneath the level of the marketplace. Lexington Books.
- PMID 29517037.
- ^ "Encyclopædia Britannica's definition of Intensive Agriculture". Archived from the original on 5 July 2006.
- ^ "BBC School fact sheet on intensive farming". Archived from the original on 3 May 2007.
- ^ "Wheat Stem Rust – UG99 (Race TTKSK)". FAO. Archived from the original on 7 January 2014. Retrieved 6 January 2014.
- ^ Sample, Ian (31 August 2007). "Global food crisis looms as climate change and population growth strip fertile land" Archived 29 April 2016 at the Wayback Machine, The Guardian (London).
- ^ "Africa may be able to feed only 25% of its population by 2025". Mongabay. 14 December 2006. Archived from the original on 27 November 2011. Retrieved 15 July 2016.
- ^ Scheierling, Susanne M. (1995). "Overcoming agricultural pollution of water: the challenge of integrating agricultural and environmental policies in the European Union, Volume 1". The World Bank. Archived from the original on 5 June 2013. Retrieved 15 April 2013.
- ^ "CAP Reform". European Commission. 2003. Archived from the original on 17 October 2010. Retrieved 15 April 2013.
- ISBN 978-1-4684-1508-7.
- ^ "The cutting-edge technology that will change farming". Agweek. 9 November 2018. Archived from the original on 17 November 2018. Retrieved 23 November 2018.
- ^ Charles, Dan (3 November 2017). "Hydroponic Veggies Are Taking Over Organic, And A Move To Ban Them Fails". NPR. Archived from the original on 24 November 2018. Retrieved 24 November 2018.
- PMID 30194344.
- ^ GM Science Review First Report Archived 16 October 2013 at the Wayback Machine, Prepared by the UK GM Science Review panel (July 2003). Chairman David King, p. 9
- ^ a b "UNCTADstat – Table view". Archived from the original on 20 October 2017. Retrieved 26 November 2017.
- ^ "Agricultural Productivity in the United States". USDA Economic Research Service. 5 July 2012. Archived from the original on 1 February 2013. Retrieved 22 April 2013.
- ^ ISBN 978-92-5-138262-2. Archivedfrom the original on 15 December 2023. Retrieved 13 December 2023 – via FAODocuments.
- ^ from the original on 13 April 2023. Retrieved 3 February 2023.
- ISBN 978-92-5-136502-1. Archivedfrom the original on 13 April 2023. Retrieved 6 February 2023.
- ^ "Food prices: smallholder farmers can be part of the solution". International Fund for Agricultural Development. Archived from the original on 5 May 2013. Retrieved 24 April 2013.
- ^ "World Bank. 2021. Employment in agriculture (% of total employment) (modeled ILO estimate)". The World Bank. Washington, D.C. 2021. Archived from the original on 7 October 2019. Retrieved 12 May 2021.
- JSTOR 23251993.
- JSTOR 3083394.
- ISSN 1463-6786.
- ^ "FAOSTAT: Employment Indicators: Agriculture". FAO. Rome. 2022. Archived from the original on 14 November 2021. Retrieved 6 February 2022.
- ^ "Employment in agriculture (% of total employment) (modeled ILO estimate)". data.worldbank.org. Archived from the original on 7 October 2019. Retrieved 14 March 2023.
- ^ Allen, Robert C. "Economic structure and agricultural productivity in Europe, 1300–1800" (PDF). European Review of Economic History. 3: 1–25. Archived from the original (PDF) on 27 October 2014.
- ^ "Labor Force – By Occupation". The World Factbook. Central Intelligence Agency. Archived from the original on 22 May 2014. Retrieved 4 May 2013.
- ^ a b c "Safety and health in agriculture". International Labour Organization. 21 March 2011. Archived from the original on 18 March 2018. Retrieved 1 April 2018.
- ^ "Services sector overtakes farming as world's biggest employer: ILO". The Financial Express. Associated Press. 26 January 2007. Archived from the original on 13 October 2013. Retrieved 24 April 2013.
- ^ In Brief: The State of Food and Agriculture 2018. Migration, agriculture and rural development. Rome: FAO. 2018. Archived from the original on 3 February 2023. Retrieved 6 February 2023.
- ^ Caruso, F.; Corrado, A. (2015). "Migrazioni e lavoro agricolo: un confronto tra Italia e Spagna in tempi di crisi". In M. Colucci & S. Gallo (ed.). Tempo di cambiare. Rapporto 2015 sulle migrazioni interne in Italia. Rome: Donizelli. pp. 58–77.
- ^ Kasimis, Charalambos (1 October 2005). "Migrants in the Rural Economies of Greece and Southern Europe". migrationpolicy.org. Archived from the original on 6 February 2023. Retrieved 6 February 2023.
- ISSN 2467-4540.
- doi:10.1002/psp.514.
- from the original on 6 February 2023. Retrieved 6 February 2023.
- ^ "Agriculture: How immigration plays a critical role". New American Economy. Archived from the original on 6 April 2023. Retrieved 6 February 2023.
- ^ ISBN 978-92-5-109873-8. Archivedfrom the original on 14 March 2023. Retrieved 6 February 2023.
- ^ from the original on 16 February 2024. Retrieved 9 November 2023.
- ^ "NIOSH Workplace Safety & Health Topic: Agricultural Injuries". Centers for Disease Control and Prevention. Archived from the original on 28 October 2007. Retrieved 16 April 2013.
- from the original on 2 April 2013. Retrieved 15 April 2013.
- ^ a b "NIOSH Workplace Safety & Health Topic: Agriculture". Centers for Disease Control and Prevention. Archived from the original on 9 October 2007. Retrieved 16 April 2013.
- ^ from the original on 27 April 2018. Retrieved 18 April 2018.
- PMID 30188948.
- ^ "Agriculture: A hazardous work". International Labour Organization. 15 June 2009. Archived from the original on 3 March 2018. Retrieved 1 April 2018.
- NIOSH. 21 March 2018. Archivedfrom the original on 18 June 2019. Retrieved 7 April 2018.
- NIOSH. 28 February 2018. Archivedfrom the original on 8 April 2018. Retrieved 7 April 2018.
- ^ "Protecting health and safety of workers in agriculture, livestock farming, horticulture and forestry". European Agency for Safety and Health at Work. 17 August 2017. Archived from the original on 29 September 2018. Retrieved 10 April 2018.
- S2CID 51721534.
- ^ "Value of agricultural production". Our World in Data. Archived from the original on 8 March 2020. Retrieved 6 March 2020.
- ^ "Analysis of farming systems". Food and Agriculture Organization. Archived from the original on 6 August 2013. Retrieved 22 May 2013.
- ^ a b "Agricultural Production Systems". pp. 283–317 in Acquaah.
- ^ a b c d e f g "Farming Systems: Development, Productivity, and Sustainability", pp. 25–57 in Chrispeels
- ^ a b c d "Food and Agriculture Organization of the United Nations (FAOSTAT)". Archived from the original on 18 January 2013. Retrieved 2 February 2013.
- ^ "Profiles of 15 of the world's major plant and animal fibres". FAO. 2009. Archived from the original on 3 December 2020. Retrieved 26 March 2018.
- ISBN 978-0-521-63495-3. Retrieved 10 February 2019.
- ISBN 978-1-86252-992-2.
- ^ a b c Sere, C.; Steinfeld, H.; Groeneweld, J. (1995). "Description of Systems in World Livestock Systems – Current status issues and trends". U.N. Food and Agriculture Organization. Archived from the original on 26 October 2012. Retrieved 8 September 2013.
- ^ PMID 20713389.
- ^ Stier, Ken (19 September 2007). "Fish Farming's Growing Dangers". Time. Archived from the original on 7 September 2013.
- from the original on 3 August 2017.
- ^ "Growth Promoting Hormones Pose Health Risk to Consumers, Confirms EU Scientific Committee" (PDF). European Union. 23 April 2002. Archived (PDF) from the original on 2 May 2013. Retrieved 6 April 2013.
- ^ ISBN 978-0135051955
- ^ "Land Preparation and Farm Energy", pp. 318–338 in Acquaah
- ^ "Pesticide Use in U.S. Crop Production", pp. 240–282 in Acquaah
- ^ "Soil and Land", pp. 165–210 in Acquaah
- ^ "Nutrition from the Soil", pp. 187–218 in Chrispeels
- ^ "Plants and Soil Water", pp. 211–239 in Acquaah
- ^ ISBN 978-92-5-136043-9. Archivedfrom the original on 13 April 2023. Retrieved 6 February 2023.
- .
- ^ from the original on 13 April 2023. Retrieved 6 February 2023.
- from the original on 5 March 2014.
- .
- ISSN 2405-8963.
- S2CID 254932536.
- ^ ISBN 978-92-5-137005-6. Archivedfrom the original on 13 April 2023. Retrieved 6 February 2023.
- ^ a b c Santos Valle, S.; Kienzle, J. (2020). Agriculture 4.0 – Agricultural robotics and automated equipment for sustainable crop production. FAO. Archived from the original on 10 February 2023. Retrieved 6 February 2023.
- ^ "FAOSTAT: Discontinued archives and data series: Machinery". Food and Agriculture Organization. Archived from the original on 14 November 2021. Retrieved 1 December 2021.
- S2CID 225280050.
- from the original on 13 April 2023.
- ISBN 978-92-5-137080-3.
- ^ ISBN 978-92-5-137099-5.
- ^ Milius, Susan (13 December 2017). "Worries grow that climate change will quietly steal nutrients from major food crops". Science News. Archived from the original on 23 April 2019. Retrieved 21 January 2018.
- ^ Hoffmann, U., Section B: Agriculture – a key driver and a major victim of global warming, in: Lead Article, in: Chapter 1, in Hoffmann, U., ed. (2013). Trade and Environment Review 2013: Wake up before it is too late: Make agriculture truly sustainable now for food security in a changing climate. Geneva, Switzerland: United Nations Conference on Trade and Development (UNCTAD). pp. 3, 5. Archived from the original on 28 November 2014.
- ^ Porter, J. R., et al.., Executive summary, in: Chapter 7: Food security and food production systems Archived 5 November 2014 at the Wayback Machine(archived ), in IPCC AR5 WG2 A (2014). Field, C. B.; et al. (eds.). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II (WG2) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press. pp. 488–489. Archived from the original on 16 April 2014. Retrieved 26 March 2018.
{{cite book}}
: CS1 maint: numeric names: authors list (link) - ^ a b c d "Climate Change 2022: Impacts, Adaptation and Vulnerability". IPCC. Archived from the original on 28 February 2022. Retrieved 14 March 2023.
- ^ Paragraph 4, in: Summary and Recommendations, in: HLPE (June 2012). Food security and climate change. A report by the High Level Panel of Experts (HLPE) on Food Security and Nutrition of the Committee on World Food Security. Rome, Italy: Food and Agriculture Organization of the United Nations. p. 12. Archived from the original on 12 December 2014.
- ^ "History of Plant Breeding". Colorado State University. 29 January 2004. Archived from the original on 21 January 2013. Retrieved 11 May 2013.
- (PDF) from the original on 24 October 2007. Retrieved 11 October 2007.
- ISBN 978-0-87969-688-7.
- ^ Ruttan, Vernon W. (December 1999). "Biotechnology and Agriculture: A Skeptical Perspective" (PDF). AgBioForum. 2 (1): 54–60. Archived (PDF) from the original on 21 May 2013.
- ^ Cassman, K. (5 December 1998). "Ecological intensification of cereal production systems: The Challenge of increasing crop yield potential and precision agriculture". Proceedings of a National Academy of Sciences Colloquium, Irvine, California. Archived from the original on 24 October 2007. Retrieved 11 October 2007.
- ^ Conversion note: 1 bushel of wheat=60 pounds (lb) ≈ 27.215 kg. 1 bushel of maize=56 pounds ≈ 25.401 kg
- ^ a b "World Intellectual Property Report 2024 - 3 The importance of local capabilities in AgTech specialization". World Intellectual Property Report 2024. Retrieved 9 September 2024.
- JSTOR 1905380.
- ^ "20 Questions on Genetically Modified Foods". World Health Organization. Archived from the original on 27 March 2013. Retrieved 16 April 2013.
- ^ Whiteside, Stephanie (28 November 2012). "Peru bans genetically modified foods as US lags". Current TV. Archived from the original on 24 March 2013. Retrieved 7 May 2013.
- ^ Shiva, Vandana (2005). Earth Democracy: Justice, Sustainability, and Peace. Cambridge, MA: South End Press.
- ^ Kathrine Hauge Madsen; Jens Carl Streibig. "Benefits and risks of the use of herbicide-resistant crops". Weed Management for Developing Countries. FAO. Archived from the original on 4 June 2013. Retrieved 4 May 2013.
- ^ "Farmers Guide to GMOs" (PDF). Rural Advancement Foundation International. 11 January 2013. Archived (PDF) from the original on 1 May 2012. Retrieved 16 April 2013.
- ^ Hindo, Brian (13 February 2008). "Report Raises Alarm over 'Super-weeds'". Bloomberg BusinessWeek. Archived from the original on 26 December 2016.
- from the original on 13 January 2017.
- University of Illinois. Archivedfrom the original on 21 January 2013. Retrieved 4 May 2013.
- ^ Kimbrell, A. (2002). Fatal Harvest: The Tragedy of Industrial Agriculture. Washington: Island Press.
- ^ "Making Peace with Nature: A scientific blueprint to tackle the climate, biodiversity and pollution emergencies". United Nations Environment Programme. 2021. Archived from the original on 23 March 2021. Retrieved 9 June 2021.
- ^ International Resource Panel (2010). "Priority products and materials: assessing the environmental impacts of consumption and production". United Nations Environment Programme. Archived from the original on 24 December 2012. Retrieved 7 May 2013.
- from the original on 29 January 2022. Retrieved 19 December 2021.
- ^ a b "Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication". UNEP. 2011. Archived from the original on 10 May 2020. Retrieved 9 June 2021.
- ^ from the original on 13 January 2017.
- ^ a b Tegtmeier, E. M.; Duffy, M. (2005). "External Costs of Agricultural Production in the United States" (PDF). The Earthscan Reader in Sustainable Agriculture. Archived (PDF) from the original on 5 February 2009.
- ^ The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction, In brief. Food and Agriculture Organization. 2019. p. 12. Archived from the original on 29 April 2021. Retrieved 4 May 2021.
- ^ "French firm breeds plants that resist climate change". European Investment Bank. Archived from the original on 2 February 2023. Retrieved 25 January 2023.
- ^ "New virulent disease threatens wheat crops in Europe and North Africa – researchers". Reuters. 3 February 2017. Archived from the original on 25 January 2023. Retrieved 25 January 2023.
- ^ "Livestock a major threat to environment". UN Food and Agriculture Organization. 29 November 2006. Archived from the original on 28 March 2008. Retrieved 24 April 2013.
- ^ Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. (2006). "Livestock's Long Shadow – Environmental issues and options" (PDF). Rome: U.N. Food and Agriculture Organization. Archived from the original (PDF) on 25 June 2008. Retrieved 5 December 2008.
- ISBN 978-3-319-46707-8
- S2CID 8610995.
- ^ Bai, Z.G.; Dent, D.L.; Olsson, L. & Schaepman, M.E. (November 2008). "Global assessment of land degradation and improvement: 1. identification by remote sensing" (PDF). Food and Agriculture Organization/ISRIC. Archived from the original (PDF) on 13 December 2013. Retrieved 24 May 2013.
- hdl:1808/16724.
- (PDF) from the original on 2 November 2018. Retrieved 3 November 2018.
- ^ Molden, D. (ed.). "Findings of the Comprehensive Assessment of Water Management in Agriculture" (PDF). Annual Report 2006/2007. International Water Management Institute. Archived (PDF) from the original on 7 January 2014. Retrieved 6 January 2014.
- ISBN 978-9286143199. Archivedfrom the original on 29 November 2020. Retrieved 7 December 2020.
- ^ Li, Sophia (13 August 2012). "Stressed Aquifers Around the Globe". The New York Times. Archived from the original on 2 April 2013. Retrieved 7 May 2013.
- ^ "Water Use in Agriculture". Food and Agriculture Organization. November 2005. Archived from the original on 15 June 2013. Retrieved 7 May 2013.
- ^ "Water Management: Towards 2030". Food and Agriculture Organization. March 2003. Archived from the original on 10 May 2013. Retrieved 7 May 2013.
- ^ Pimentel, D.; Culliney, T. W.; Bashore, T. (1996). "Public health risks associated with pesticides and natural toxins in foods". Radcliffe's IPM World Textbook. Archived from the original on 18 February 1999. Retrieved 7 May 2013.
- ^ Our planet, our health: Report of the WHO commission on health and environment. Geneva: World Health Organization (1992).
- ^ a b "Strategies for Pest Control", pp. 355–383 in Chrispeels
- ISBN 978-1558130692.
- ^ "Center for Global Food Issues". cgfi.org. Archived from the original on 16 July 2016. Retrieved 14 July 2016.
- ISBN 978-0802135919. Archived from the original(PDF) on 4 March 2021 – via Oregon State University.
- PMID 16968206.
- Food and Agriculture Organization of the United Nations. pp. 67–69. Archived from the originalon 12 December 2014.
- (PDF) from the original on 26 December 2022..
- (PDF) from the original on 17 June 2021.
- ^ "How livestock farming affects the environment". www.downtoearth.org.in. Archived from the original on 30 January 2023. Retrieved 10 February 2022.
- ^ from the original on 3 April 2023. Retrieved 14 March 2023.
- ^ Boelee, E., ed. (2011). "Ecosystems for water and food security". IWMI/UNEP. Archived from the original on 23 May 2013. Retrieved 24 May 2013.
- ^ Molden, D. "Opinion: The Water Deficit" (PDF). The Scientist. Archived (PDF) from the original on 13 January 2012. Retrieved 23 August 2011.
- ^ Safefood Consulting, Inc. (2005). "Benefits of Crop Protection Technologies on Canadian Food Production, Nutrition, Economy and the Environment". CropLife International. Archived from the original on 6 July 2013. Retrieved 24 May 2013.
- .
- PMID 29078344.
- S2CID 134196575.
- )
- ^ Ecological Modelling. Archived from the original on 23 January 2018.
- ^ "World oil supplies are set to run out faster than expected, warn scientists". The Independent. 14 June 2007. Archived from the original on 21 October 2010. Retrieved 14 July 2016.
- ^ Herdt, Robert W. (30 May 1997). "The Future of the Green Revolution: Implications for International Grain Markets" (PDF). The Rockefeller Foundation. p. 2. Archived (PDF) from the original on 19 October 2012. Retrieved 16 April 2013.
- ^ a b c d Schnepf, Randy (19 November 2004). "Energy use in Agriculture: Background and Issues" (PDF). CRS Report for Congress. Congressional Research Service. Archived (PDF) from the original on 27 September 2013. Retrieved 26 September 2013.
- PMID 20713398.
- ^ Canning, Patrick; Charles, Ainsley; Huang, Sonya; Polenske, Karen R.; Waters, Arnold (2010). "Energy Use in the U.S. Food System". USDA Economic Research Service Report No. ERR-94. United States Department of Agriculture. Archived from the original on 18 September 2010.
- ^ Heller, Martin; Keoleian, Gregory (2000). "Life Cycle-Based Sustainability Indicators for Assessment of the U.S. Food System" (PDF). University of Michigan Center for Sustainable Food Systems. Archived from the original (PDF) on 14 March 2016. Retrieved 17 March 2016.
- ^ a b c UN Environment (21 October 2021). "Drowning in Plastics – Marine Litter and Plastic Waste Vital Graphics". UNEP – UN Environment Programme. Archived from the original on 21 March 2022. Retrieved 23 March 2022.
- ^ "The Anti-Corn Law League". Liberal History. Archived from the original on 26 March 2018. Retrieved 26 March 2018.
- ^ "Agricultural Economics". University of Idaho. Archived from the original on 1 April 2013. Retrieved 16 April 2013.
- ^ Runge, C. Ford (June 2006). "Agricultural Economics: A Brief Intellectual History" (PDF). Center for International Food and Agriculture Policy. p. 4. Archived (PDF) from the original on 21 October 2013. Retrieved 16 September 2013.
- ^ Conrad, David E. "Tenant Farming and Sharecropping". Encyclopedia of Oklahoma History and Culture. Oklahoma Historical Society. Archived from the original on 27 May 2013. Retrieved 16 September 2013.
- ISBN 978-0-313-32525-0. Archivedfrom the original on 16 May 2022. Retrieved 17 March 2016.
- .
- ^ a b Lloyd, Peter J.; Croser, Johanna L.; Anderson, Kym (March 2009). "How Do Agricultural Policy Restrictions to Global Trade and Welfare Differ across Commodities?" (PDF). Policy Research Working Paper #4864. The World Bank. pp. 2–3. Archived (PDF) from the original on 5 June 2013. Retrieved 16 April 2013.
- ^ Anderson, Kym; Valenzuela, Ernesto (April 2006). "Do Global Trade Distortions Still Harm Developing Country Farmers?" (PDF). World Bank Policy Research Working Paper 3901. World Bank. pp. 1–2. Archived (PDF) from the original on 5 June 2013. Retrieved 16 April 2013.
- ^ Kinnock, Glenys (24 May 2011). "America's $24bn subsidy damages developing world cotton farmers". The Guardian. Archived from the original on 6 September 2013. Retrieved 16 April 2013.
- ^ "Agriculture's Bounty" (PDF). May 2013. Archived (PDF) from the original on 26 August 2013. Retrieved 19 August 2013.
- ISBN 978-1-63239-058-5.
- ISBN 978-1-63239-965-6.
- ^ John Armstrong, Jesse Buel. A Treatise on Agriculture, The Present Condition of the Art Abroad and at Home, and the Theory and Practice of Husbandry. To which is Added, a Dissertation on the Kitchen and Garden. 1840. p. 45.
- ^ "The Long Term Experiments". Rothamsted Research. Archived from the original on 27 March 2018. Retrieved 26 March 2018.
- .
- ^ Hillison, J. (1996). The Origins of Agriscience: Or Where Did All That Scientific Agriculture Come From? Archived 2 October 2008 at the Wayback Machine. Journal of Agricultural Education.
- ^ Coulson, J. R.; Vail, P. V.; Dix M. E.; Nordlund, D. A.; Kauffman, W. C.; Eds. 2000. 110 years of biological control research and development in the United States Department of Agriculture: 1883–1993. U.S. Department of Agriculture, Agricultural Research Service. pp. 3–11
- University of California Berkeley. Archived from the original(PDF) on 24 November 2015. Retrieved 10 April 2017.
- ^ Reardon, Richard C. "Biological Control of The Gypsy Moth: An Overview". Southern Appalachian Biological Control Initiative Workshop. Archived from the original on 5 September 2016. Retrieved 10 April 2017.
- Heinrich Boell Foundation, Friends of the Earth Europe. 2014. Archivedfrom the original on 22 April 2018. Retrieved 17 April 2018.
- ^ Hogan, Lindsay; Morris, Paul (October 2010). "Agricultural and food policy choices in Australia" (PDF). Sustainable Agriculture and Food Policy in the 21st Century: Challenges and Solutions: 13. Archived (PDF) from the original on 15 December 2019. Retrieved 22 April 2013.
- ^ "Agriculture: Not Just Farming". European Union. 16 June 2016. Archived from the original on 23 May 2019. Retrieved 8 May 2018.
- ^ ISBN 978-92-5-134917-5. Archivedfrom the original on 13 April 2023. Retrieved 14 March 2023.
- ^ Ikerd, John (2010). "Corporatization of Agricultural Policy". Small Farm Today Magazine. Archived from the original on 7 August 2016.
- ^ Jowit, Juliette (22 September 2010). "Corporate Lobbying Is Blocking Food Reforms, Senior UN Official Warns: Farming Summit Told of Delaying Tactics by Large Agribusiness and Food Producers on Decisions that Would Improve Human Health and the Environment". The Guardian. Archived from the original on 5 May 2019. Retrieved 8 May 2018.
Cited sources
- Acquaah, George (2002). Principles of Crop Production: Theory, Techniques, and Technology. ISBN 978-0-13-022133-9.
- Chrispeels, Maarten J.; Sadava, David E. (1994). Plants, Genes, and Agriculture. Boston, Massachusetts: Jones and Bartlett. ISBN 978-0-86720-871-9.
- Needham, Joseph (1986). Science and Civilization in China. Taipei: Caves Books.
This article incorporates text from a free content work. Licensed under CC BY-SA 3.0 IGO (license statement/permission). Text taken from Drowning in Plastics – Marine Litter and Plastic Waste Vital Graphics, United Nations Environment Programme.
This article incorporates text from a free content work (license statement/permission). Text taken from In Brief: The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction, FAO, FAO.
This article incorporates text from a free content work (license statement/permission). Text taken from In Brief to The State of Food Security and Nutrition in the World 2022. Repurposing food and agricultural policies to make healthy diets more affordable, FAO.
This article incorporates text from a free content work (license statement/permission). Text taken from In Brief: The State of Food and Agriculture 2018. Migration, agriculture and rural development, FAO, FAO.
This article incorporates text from a free content work (license statement/permission). Text taken from In Brief to The State of Food and Agriculture 2022. Leveraging automation in agriculture for transforming agrifood systems, FAO, FAO.
This article incorporates text from a free content work (license statement/permission). Text taken from Enabling inclusive agricultural automation, FAO, FAO.
This article incorporates text from a free content work. Licensed under CC BY-SA 3.0 (license statement/permission). Text taken from The status of women in agrifood systems – Overview, FAO, FAO.
This article incorporates text from a free content work. Licensed under CC BY-SA IGO 3.0 (license statement/permission). Text taken from World Food and Agriculture – Statistical Yearbook 2023, FAO, FAO.
This article incorporates text from a free content work. Licensed under CC BY 4.0 (license statement/permission). Text taken from World Intellectual Property Report 2024 - The importance of local capabilities in AgTech specialization, WIPO, WIPO.
External links
- Food and Agriculture Organization
- United States Department of Agriculture
- Agriculture material from the World Bank Group
- Agriculture collected news and commentary at The New York Times
- Agriculture collected news and commentary at The Guardian