Subtilisin

Source: Wikipedia, the free encyclopedia.
(Redirected from
Alcalase
)
Peptidase S8, subtilisin-related
SCOP2
1cse / SCOPe / SUPFAM
CDDcd07477
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Subtilisin BPN'
GO:0004252

Subtilisin is a protease (a protein-digesting enzyme) initially obtained from Bacillus subtilis.[2][3][4][5][6][7][8]

Subtilisins belong to

nucleophilic attack on the peptide (amide) bond through a serine residue at the active site. Subtilisins typically have molecular weights 27kDa. They can be obtained from certain types of soil bacteria, for example, Bacillus amyloliquefaciens
from which they are secreted in large amounts.

Nomenclature

"Subtilisin" does not refer to a single protein, but to an entire clade under subtilases containing the classical subtilisins. The clade can be further divided into four groups: "true subtilisins" (containg the classical members), "high-alkaline subtilisins", "intracellular subtilisins", and "phylogenetically intermediate subtilisins" (PIS).[9][10] Notable subtilisins include:

Family Organism Uniprot Names Notes
True B. licheniformis P00780 Subtilisin Carlsberg, Alcalase (Novozymes), Maxatase (?)
"subtilisin DY" (X-ray mutant)[11]
Type
serine endopeptidase
of MEROPS family S8.
? B. licheniformis ? Endocut-02L (Tailorzyme ApS)
? ? ? bioprase, bioprase AL
? Lederbergia lenta Esperase (Novozymes) Structure determined, but not found on PDB.[12]
High-alkaline Lederbergia lenta P29600 Subtilisin Savinase, Savinase (Novozymes) PDB: 1SVN[13]
True B. amyloliquefaciens P00782 Subtilisin BPN’, Alcalase (Novozymes)
? Geobacillus stearothermophilus P29142 Subtilisin J, Thermoase (Amano) [14]

Other non-commercial names include ALK-enzyme, bacillopeptidase, Bacillus subtilis alkaline proteinase, colistinase, genenase I, protease XXVII, subtilopeptidase, kazusase, protease VIII, protin A 3L, protease S.

Other commercial names with unidentified molecular identities include SP 266, orientase 10B (HBI Enzymes), Progress (Novozyme), Liquanase (Novozyme).

Structure

The structure of subtilisin has been determined by

beta-sheet. The N-terminal contains an I9 propeptide domain (InterProIPR010259) that assists the folding of subtilisin. Proteolytic removal of the domain activates the enzyme. It is structurally unrelated to the chymotrypsin-clan of serine proteases, but uses the same type of catalytic triad in the active site. This makes it a classic example of convergent evolution
.

Mechanism of catalysis

The active site features a charge-relay network involving Asp-32, His-64, and active site Ser-221 arranged in a catalytic triad. The charge-relay network functions as follows: The carboxylate side-chain of Asp-32 hydrogen-bonds to a nitrogen-bonded proton on His-64's imidazole ring. This is possible because Asp is negatively charged at physiological pH. The other nitrogen on His-64 hydrogen-bonds to the O-H proton of Ser-221. This last interaction results in charge-separation of O-H, with the oxygen atom being more nucleophilic. This allows the oxygen atom of Ser-221 to attack incoming substrates (i.e., peptide bonds), assisted by a neighboring carboxyamide side-chain of Asn-155.

Even though Asp-32, His-64, and Ser-221 are sequentially far apart, they converge in the

3D structure
to form the active site.

To summarize the interactions described above, Ser-221 acts as a nucleophile and cleaves peptide bonds with its partially negative oxygen atom. This is possible due to the nature of the charge-relay site of subtilisin.

Applications

Research tool

In molecular biology using B. subtilis as a model organism, the gene encoding subtilisin (aprE) is often the second gene of choice after amyE for integrating reporter constructs into, due to its dispensability.

Commercial

detergents, cosmetics, food processing,[16] skin care products, contact lens cleaners, and for research in synthetic organic chemistry
.

Occupational safety and health

People can be exposed to subtilisin in the workplace by breathing it in, swallowing it, skin contact, and eye contact. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) of 60 ng/m3 over a 60-minute period.[17]

Subtilisin can cause "enzymatic detergent asthma". People who are sensitive to Subtilisin (Alcalase) usually are also allergic to the bacterium Bacillus subtilis. [18]

References

  1. PMID 3286644
    .
  2. .
  3. ^ Markland FS, Smith EL (1971). "Subtilisins: primary structure, chemical and physical properties". In Boyer PD (ed.). The Enzymes. Vol. 3 (3rd ed.). New York: Academic Press. pp. 561–608.
  4. S2CID 24136200
    .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. ^ "THERMOASE PC10F by Amano Enzyme U.S.A. Co., Ltd. - Food, Beverage & Nutrition". www.ulprospector.com.
  15. ^ "Spar Washing Detergent contents".
  16. ^ Chaplin M (20 December 2004). "Applications of proteases in the food industry". London South Bank University. Archived from the original on 2010-03-14. Retrieved 3 March 2015.
  17. ^ "CDC - NIOSH Pocket Guide to Chemical Hazards - Subtilisins". www.cdc.gov. Retrieved 2015-11-21.
  18. ^ Mosby's Medical, Nursing, & Allied Health Dictionary, 14th edition, page 557