Amanita bisporigera

Source: Wikipedia, the free encyclopedia.

Amanita bisporigera
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Order: Agaricales
Family: Amanitaceae
Genus: Amanita
Species:
A. bisporigera
Binomial name
Amanita bisporigera
G.F.Atk. (1906)
Synonyms[1][2]
  • Amanita phalloides var. striatula Peck (1902)
  • Amanita vernella (
    Murrill
    ) Murrill (1945)
  • Amanitina bisporigera (G.F.Atk.) E.-J. Gilbert (1941)
Amanita bisporigera
View the Mycomorphbox template that generates the following list
Gills on hymenium
Cap is convex or flat
mycorrhizal
Edibility is deadly

Amanita bisporigera is a deadly

basidia
, although this characteristic is not immutable. A. bisporigera closely resembles a few other white amanitas, including the equally deadly A. virosa and A. verna.

A. bisporigera was

deciduous forests of eastern North America south to Mexico, but are rare in western North America. The first symptoms of poisoning appear 6 to 24 hours after consumption, followed by a period of apparent improvement, then by symptoms of liver and kidney failure
, and death after four days or more.

Description

The white gills are crowded closely together, and the stipe base is bulbous.

The cap is 3–10 centimetres (1–4 inches) in diameter and, depending on its age, ranges in shape from egg-shaped to convex to somewhat flattened. The cap surface is smooth and white, sometimes with a pale tan- or cream-colored tint in the center. The surface is either dry or, when the environment is moist, slightly sticky. The flesh is thin and white, and does not change color when bruised.[4] The margin of the cap, which is rolled inwards in young specimens, does not have striations (grooves), and lacks volval remnants. The gills, also white, are crowded closely together. They are either free from attachment to the stipe or just barely reach it. The lamellulae (short gills that do not extend all the way to the stipe) are numerous, and gradually narrow.

Surfaces turn yellow when stained with potassium hydroxide solution.

The white stipe is 6–14 cm (2+125+12 in) by 0.7–1.8 cm (1434 in) thick, solid (i.e., not hollow), and tapers slightly upward. The surface, in young specimens especially, is frequently floccose (covered with tufts of soft hair), fibrillose (covered with small slender fibers), or squamulose (covered with small scales); there may be fine grooves along its length. The bulb at the base of the stipe is spherical or nearly so. The delicate ring on the upper part of the stipe is a remnant of the partial veil that extends from the cap margin to the stalk and covers the gills during development. It is white, thin, membranous, and hangs like a skirt. When young, the mushrooms are enveloped in a membrane called the universal veil, which stretches from the top of the cap to the bottom of the stipe, imparting an oval, egg-like appearance. In mature fruit bodies, the veil's remnants form a membrane around the base, the volva, like an eggshell-shaped cup. On occasion, however, the volva remains underground or gets torn up during development. It is white, sometimes lobed, and may become pressed closely to the stipe.[5] The volva is up to 3.8 cm (1+12 in) in height (measured from the base of the bulb), and is about 2 mm thick midway between the top and the base attachment.[6] The mushroom's odor has been described as "pleasant to somewhat nauseous",[4] becoming more cloying as the fruit body ages.[6] The cap flesh turns yellow when a solution of potassium hydroxide (KOH, 5–10%) is applied (a common chemical test used in mushroom identification). This characteristic chemical reaction is shared with A. ocreata and A. virosa, although some authors have expressed doubt about the identity of North American A. virosa, suggesting those collections may represent four-spored A. bisporigera.[6][7] Tulloss suggests that reports of A. bisporigera that do not turn yellow with KOH were actually based on white forms of A. phalloides.[6] Findings from the Chiricahua Mountains of Arizona and in central Mexico, although "nearly identical" to A. bisporigera, do not stain yellow with KOH; their taxonomic status has not been investigated in detail.[2]

Microscopic features

cystidia found on the gill faces and edges, respectively) are absent, but there may be cylindrical to sac-like cells of the partial veil on the gill edges; these cells are hyaline and measure 24–34 by 7–16 μm.[4]

Development of basidia, as illustrated by Lewis in 1906[8]

In 1906 Charles E. Lewis studied and illustrated the development of the basidia in order to compare the nuclear behavior of the two-spored with that of the four-spored forms. Initially (1), the young basidium, appearing as a club-shaped branch from the subhymenium, is filled with cytoplasm and contains two primary nuclei, which have distinct nucleoli. As the basidium grows larger, the membranes of the two nuclei contact (2), and then the membrane disappears at the point of contact (3). The two primary nuclei remain distinct for a short time, but eventually the two nuclei fuse completely to form a larger secondary nucleus with a single secondary nucleolus (4, 5). The basidium increases in size after the primary nuclei fuse, and the nucleus migrates towards the end of the basidia (6, 7). During this time, the nucleus develops vacuoles "filled by the nuclear sap in the living cell". Chromosomes are produced from the nucleolar threads, and align transversely near the apex of the basidium, connected by spindles (8–10). The chromosomes then move to the poles, forming the daughter nuclei that occupy different positions in the basidium; the daughters now have a structure similar to that of the parent nuclei (11). The two nuclei then divide to form four nuclei, similar to fungi with four-spored basidia (12, 13). The four nuclei crowd together at some distance from the end of the basidium to form an irregular mass (14). Shortly thereafter, the sterigmata (slender projections of the basidia that attach the spores) begin to form (15), and cytoplasm begins to pass through the sterigmata to form the spores (16). Although Lewis was not able to clearly determine from observation alone whether the contents of two or four nuclei passed through the sterigmata, he deduced, by examining older basidia with mature spores, that only two nuclei enter the spores (16, 17).[8]

Genome

The Amanita Genome Project was begun in Jonathan Walton's lab at

processing.[12][13]

The genetic sequence information from A. bisporigera has been used to identify molecular

saprobic fungi like Coprinopsis cinerea and Galerina marginata, which break down organic matter to obtain nutrients, have a more complete complement of cell wall-degrading enzymes. Although few ectomycorrhizal fungi have yet been tested in this way, the authors suggest that the absence of plant cell wall-degrading ability may correlate with the ectomycorrhizal ecological niche.[15]

Similar species

The color and general appearance of A. bisporigera are similar to those of A. verna and A. virosa. A. bisporigera is at times smaller and more slender than either A. verna or A. virosa, but it varies considerably in size; therefore size is not a reliable diagnostic characteristic.[4] A. virosa fruits in autumn—later than A. bisporigera.[16] A. elliptosperma is less common but widely distributed in the southeastern United States, while A. ocreata is found on the West Coast and in the Southwest. Other similar toxic North American species include Amanita magnivelaris, which has a cream-colored, rather thick, felted-submembranous, skirt-like ring,[17] and A. virosiformis, which has elongated spores that are 3.9–4.7 by 11.7–13.4 μm.[18] Neither A. elliptosperma nor A. magnivelaris typically turn yellow with the application of KOH;[19][20] the KOH reaction of A. virosiformis has not been reported.[21]

A trio of deadly angels: Amanita ocreata (left); A. verna (middle); A. virosa (right)

Leucoagaricus leucothites is another all-white mushroom with an annulus, free gills, and white spore print, but it lacks a volva and has thick-walled dextrinoid (staining red-brown in Melzer's reagent) egg-shaped spores with a pore.[22][23] A. bisporigera may also be confused with the larger edible species Agaricus silvicola, the "horse-mushroom". Like many white amanitas, young fruit bodies of A. bisporigera, still enveloped in the universal veil, can be confused with puffball species, but a longitudinal cut of the fruit body reveals internal structures in the Amanita that are absent in puffballs.[24] In 2006, seven members of the Hmong community living in Minnesota were poisoned with A. bisporigera because they had confused it with edible paddy straw mushrooms (Volvariella volvacea) that grow in Southeast Asia.[25]

Taxonomy

Relationships of Amanita bisporigera and related species based on ITS sequence data. The A. virosa specimen was collected from Japan, A. bisporigera from the US, and the other species from China.[26]

Amanita bisporigera was first described scientifically in 1906 by American botanist

type locality was Ithaca, New York, where several collections were made.[8] In his 1941 monograph of world Amanita species, Édouard-Jean Gilbert transferred the species to his new genus Amanitina,[27] but this genus is now considered synonymous with Amanita.[28] In 1944, William Murrill described the species Amanita vernella, collected from Gainesville, Florida;[29] that species is now thought to be synonymous with A. bisporigera after a 1979 examination of its type material revealed basidia that were mostly 2-spored.[2][30] Amanita phalloides var. striatula, a poorly known taxon originally described from the United States in 1902 by Charles Horton Peck,[31] is considered by Amanita authority Rodham Tulloss to be synonymous with A. bisporigera.[2] Vernacular names for the mushroom include "destroying angel", "deadly amanita", "white death cap", "angel of death"[4] and "eastern North American destroying angel".[6]

Amanita bisporigera belongs to

phylogenetic analyses, which demonstrate that the toxin-producing members of section Phalloideae form a clade—that is, they derive from a common ancestor.[32][33] In 2005, Zhang and colleagues performed a phylogenetic analysis based on the internal transcribed spacer (ITS) sequences of several white-bodied toxic Amanita species, most of which are found in Asia. Their results support a clade containing A. bisporigera, A. subjunquillea var. alba, A. exitialis, and A. virosa. The Guangzhou destroying angel (Amanita exitialis) has two-spored basidia, like A. bisporigera.[26]

Distribution and habitat

Like most other Amanita species, A. bisporigera is thought to form

mycorrhizal relationships with trees.[7] This is a mutually beneficial relationship where the hyphae of the fungus grow around the roots of trees, enabling the fungus to receive moisture, protection and nutritive byproducts of the tree, and giving the tree greater access to soil nutrients.[34] Fruit bodies of Amanita bisporigera are found on the ground growing either solitarily, scattered, or in groups in mixed coniferous and deciduous forests;[5] they tend to appear during summer and early fall.[16] The fruit bodies are commonly found near oak, but have been reported in birch-aspen areas in the west. It is most commonly found in eastern North America, and rare in western North America. It is widely distributed in Canada,[4] and its range extends south to Mexico.[35] The species has also been found in Colombia, where it may have been introduced from trees exported for use in pine plantations.[6]

Toxicity

α-amanitin, principal toxic component of A. bisporigera

A. bisporigera is considered the most toxic North American Amanita mushroom, with little variation in toxin content between different fruit bodies.

milligrams of α-amanitin is present in 1 gram of A. bisporigera; the lethal dose in humans is less than 0.1 mg/kg body weight.[38] One mature fruit body can contain 10–12 mg of α-amanitin, enough for a lethal dose.[12] The α-amanitin concentration in the spores is about 17% that of the fruit body tissues.[41] A. bisporigera also contains the phallotoxin phallacidin, structurally related to the amatoxins but considered less poisonous because of poor absorption.[12] Poisonings (from similar white amanitas) have also been reported in domestic animals, including dogs, cats, and cows.[42]

The first reported poisonings resulting in death from the consumption of A. bisporigera were from near

hyperbilirubinemia (jaundice), and rising serum creatinine levels.[38]

See also

References

  1. ^ "Amanitina bisporigera (G.F. Atk.) E.-J. Gilbert 1941". MycoBank. International Mycological Association. Retrieved 2010-05-27.
  2. ^ a b c d Tulloss R, Pussiel L (2005-07-16). "Key to Species of AMANITA Section PHALLOIDEAE from North and Central America". Amanita studies. Retrieved 2010-05-28.
  3. ^ "Standardized Common Names for Wild Species in Canada". National General Status Working Group. 2020.
  4. ^ .
  5. ^ a b c d Jenkins, 1986, pp. 140–41.
  6. ^ a b c d e f g Tulloss R. "Amanita bisporigera G. F. Atk". Amanita studies. Archived from the original on 2011-05-15. Retrieved 2010-05-27.
  7. ^ a b Kuo M. (October 2003). "Amanita bisporigera". MushroomExpert.Com. Archived from the original on 5 May 2010. Retrieved 2010-05-26.
  8. ^
    JSTOR 2465725
    .
  9. ^ Hallen HE, Walton J. "The Amanita Genome Project: Scientific Importance". Michigan State University. Archived from the original on 2011-06-07. Retrieved 2010-05-27.
  10. PMID 27978833
    .
  11. ^ "BLAST Search". Amanita bisporigera Genome Project BLAST Page. Michigan State University DOE Plant Research Laboratory and the Bioinformatics Core of the Research Technology Support Facility at MSU. Archived from the original on 2006-09-01. Retrieved 2010-07-10.
  12. ^
    PMID 18025465
    .
  13. .
  14. on 2006-09-19.
  15. .
  16. ^ .
  17. ^ Tulloss R. (2009). "Amanita magnivelaris Peck". Amanita studies. Archived from the original on 2011-07-16. Retrieved 2010-05-28.
  18. ^ Jenkins, 1986, p. 146.
  19. ^ Tullos R. "Amanita elliptosperma G.F. Atk., A. gwyniana Coker, A. hygroscopica Coker, A. parviformis (Murrill) Murrill, A. pseudoverna (Murrill) Murrill, A. verniformis (Murrill) Murrill". Amanita Studies. Archived from the original on 2011-07-14. Retrieved 2010-06-28.
  20. ^ Tulloss R. "Amanita magnivelaris Peck". Amanita Studies. Archived from the original on 2011-07-14. Retrieved 2010-06-28.
  21. ^ Jenkins, 1986, p. 141.
  22. .
  23. .
  24. .
  25. .
  26. ^ .
  27. ^ Gilbert E-J (1940). "Amanitaceae". Iconographia Mycologica. 27 (Suppl. 1): 78.
  28. .
  29. ^ Murrill WA (1944). "More fungi from Florida". Lloydia. 7 (4): 303–327.
  30. ^ Jenkins DT (1979). "A study of Amanita types III. Taxa described by W. A. Murrill". Mycotaxon. 10 (1): 175–200. Archived from the original on 2015-09-23. Retrieved 2010-05-28.
  31. ^ Peck CH (1902). "Report of the State Botanist 1901". Bulletin of the New York State Museum. 54: 931–982.
  32. .
  33. .
  34. ^ Jenkins, 1986, p. 5.
  35. PMID 4773309
    .
  36. .
  37. .
  38. ^ .
  39. .
  40. .
  41. .
  42. .
  43. ^ Helm R. (1957). "Sur un cas d'empoisonnement mortel cause au Mexique par l'Amanita bisporigera Atk" [On a case of fatal poisoning caused by Amanita bisporigera Atk. in Mexico]. Revue de Mycologie (in French). 22 (2): 208–216.
  44. PMID 8656182
    .

Cited books

External links