Antarctic krill

Listen to this article
Source: Wikipedia, the free encyclopedia.

Antarctic krill

Least Concern  (IUCN 3.1)[1]
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Malacostraca
Order: Euphausiacea
Family:
Euphausiidae
Genus: Euphausia
Species:
E. superba
Binomial name
Euphausia superba
Dana, 1850
Synonyms [2]
  • Euphausia antarctica Sars, 1883
  • Euphausia australis
  • Euphausia glacialis
  • Euphausia murrayi Sars, 1883

Antarctic krill (Euphausia superba) is a

pelagic (open ocean) life cycle.[4] It grows to a length of 6 centimetres (2.4 in), weighs up to 2 grams (0.071 oz), and can live for up to six years. It is a key species in the Antarctic ecosystem and in terms of biomass, is one of the most abundant animal species on the planet – approximately 500 million metric tons (550 million short tons; 490 million long tons).[5]

Life cycle

The eggs are spawned close to the surface and start sinking. In the open ocean they sink for about 10 days: the nauplii hatch at around 3,000 metres (9,800 ft) depth

The main

eggs at one time. They are fertilised as they pass out of the genital opening.[6]

According to the classical hypothesis of Marriosis De' Abrtona,

nauplius larva; once this has moulted into a metanauplius, the young animal starts migrating towards the surface in a migration known as developmental ascent.[8]

The next two larval stages, termed second nauplius and metanauplius, still do not eat but are nourished by the remaining

exuvia
.

thoracopods
and the rakes at the tips of the thoracopods.

Food

The gut of E. superba can often be seen shining green through its transparent skin. This species feeds predominantly on

amphipods and other small zooplankton. The gut forms a straight tube; its digestive efficiency is not very high and therefore a lot of carbon is still present in the feces. Antarctic krill (E. superba) primarily has chitinolytic enzymes in the stomach and mid-gut to break down chitinous spines on diatoms, additional enzymes can vary due to its expansive diet.[10]

In aquaria, krill have been observed to eat each other. When they are not fed, they shrink in size after moulting, which is exceptional for animals this size. It is likely that this is an adaptation to the seasonality of their food supply, which is limited in the dark winter months under the ice. However, the animal's compound eyes do not shrink, and so the ratio between eye size and body length has thus been found to be a reliable indicator of starvation.[11] A krill with ample food supply would have eyes proportional to body length, compared to a starving krill that would have eyes that appeared larger than what is normal.

Modified thoracopods that form the feeding basket of the filter apparatus move through the water to bring phytoplankton cells into the mouth.

Filter feeding