Antonie van Leeuwenhoek

Page semi-protected
Source: Wikipedia, the free encyclopedia.
(Redirected from
Antoni van Leeuwenhoek
)

Antonie van Leeuwenhoek
microscopist and microbiologist in history[note 1]
  • Microscopic discovery of microorganisms (animalcule)
  • Scientific career
    Fields
    Signature

    Antonie Philips van Leeuwenhoek

    scientific discipline
    .

    Raised in

    microbial life
    with his microscope.

    Using single-lensed microscopes of his own design and make, Van Leeuwenhoek was the first to observe and to experiment with

    Philosophical Transactions.[10]

    Early life and career

    Van Leeuwenhoek's birth house at Oosteinde, before it was demolished in 1926.

    Antonie van Leeuwenhoek was born in Delft, Dutch Republic, on 24 October 1632. On 4 November, he was baptized as Thonis. His father, Philips Antonisz van Leeuwenhoek, was a basket maker who died when Antonie was only five years old. His mother, Margaretha (Bel van den Berch), came from a well-to-do brewer's family. She remarried Jacob Jansz Molijn, a painter and the family moved to Warmond around 1640. Antonie had four older sisters: Margriet, Geertruyt, Neeltje, and Catharina.[11] When he was around ten years old his step-father died. He was sent to live in Benthuizen with his uncle, an attorney. At the age of 16 he became a bookkeeper's apprentice (casher) at a linen-draper's shop at Warmoesstraat in Amsterdam,[12] which was owned by William Davidson. Van Leeuwenhoek left there after six years.[13][14]

    In July 1654 Van Leeuwenhoek married Barbara de Mey in Delft, with whom he fathered one surviving daughter, Maria (four other children died in infancy). He would live and study for the rest of his life at Hypolytusbuurt in a house he bought in 1655. He opened a draper's shop, selling linen, yarn and ribbon to seamstresses and tailors.

    the city hall
    , a position which he would hold for almost 40 years. His duties included maintaining the premises, heating, cleaning, opening for meetings, performing duties for those assembled, and maintaining silence on all matters discussed there.

    In 1669 he was appointed as a

    land surveyor by the court of Holland; at some time he combined it with another municipal job, being the official "wine-gauger" of Delft and in charge of the city wine imports and taxation.[16] His wife had died in 1666, and in 1671, Van Leeuwenhoek remarried to Cornelia Swalmius with whom he had no children.[17]

    Painting of man with scroll and compass, standing by sunlit window
    The Geographer by Johannes Vermeer

    Van Leeuwenhoek was a contemporary of another famous Delft citizen, the painter Johannes Vermeer, who was baptized just four days earlier. It has been suggested that he is the man portrayed in two Vermeer paintings of the late 1660s, The Astronomer and The Geographer, but others argue that there appears to be little physical similarity. Because they were both relatively important men in a city with only 24,000 inhabitants, living both close to the main market, it is likely they knew each other. Van Leeuwenhoek acted as the executor of Vermeer's will when the painter died in 1675.[18][note 4]

    Van Leeuwenhoek's religion was "

    Calvinist.[19] Like Jan Swammerdam he often referred with reverence to the wonders God designed in making creatures great and small, and believed that his discoveries were merely further proof of the wonder of creation.[20][21]

    Microscopic study

    ash tree
    (Fraxinus) wood, drawing made by Van Leeuwenhoek

    While running his draper shop, Van Leeuwenhoek wanted to see the quality of the thread better than what was possible using the magnifying lenses of the time. He developed an interest in lensmaking, although few records exist of his early activity. By placing the middle of a small rod of soda lime glass in a hot flame, one can pull the hot section apart to create two long whiskers of glass. Then, by reinserting the end of one whisker into the flame, a very small, high-quality glass lens is created. Significantly, a May 2021 neutron tomography study of a high-magnification Leeuwenhoek microscope[22] captured images of the short glass stem characteristic of this lens creation method. For lower magnifications he also made ground lenses.[23] To help keep his methods confidential he apparently intentionally encouraged others to think grinding was his primary or only lens construction method.

    Recognition by the Royal Society

    After developing his method for creating powerful lenses and applying them to the study of the microscopic world,

    Reinier de Graaf. When the Royal Society in London published the groundbreaking work of an Italian lensmaker in their journal Philosophical Transactions of the Royal Society, de Graaf wrote to the editor of the journal, Henry Oldenburg, with a ringing endorsement of Van Leeuwenhoek's microscopes which, he claimed, "far surpass those which we have hitherto seen". In response, in 1673 the society published a letter from Van Leeuwenhoek that included his microscopic observations on mold, bees, and lice.[25]

    Page in a handwritten manuscript volume
    A 1677 letter from Van Leeuwenhoek to Oldenburg, with the latter's English translation behind. The full correspondence remains in the Royal Society Library in London.

    Van Leeuwenhoek's work fully captured the attention of the Royal Society, and he began corresponding regularly with the society regarding his observations. At first he had been reluctant to publicize his findings, regarding himself as a businessman with little scientific, artistic, or writing background, but de Graaf urged him to be more confident in his work.

    animalcules to translate the Dutch words that Leeuwenhoek used to describe microorganisms.[9] Despite the initial success of Van Leeuwenhoek's relationship with the Royal Society, soon relations became severely strained. His credibility was questioned when he sent the Royal Society a copy of his first observations of microscopic single-celled organisms dated 9 October 1676.[28] Previously, the existence of single-celled organisms was entirely unknown. Thus, even with his established reputation with the Royal Society as a reliable observer, his observations of microscopic life were initially met with some skepticism.[29]

    Illustration of critique of Observationes microscopicae Antonii Levvenhoeck... published in Acta Eruditorum, 1682

    Eventually, in the face of Van Leeuwenhoek's insistence, the Royal Society arranged for Alexander Petrie, minister to the English Reformed Church in Delft; Benedict Haan, at that time Lutheran minister at Delft; and Henrik Cordes, then Lutheran minister at the Hague, accompanied by Sir Robert Gordon and four others, to determine whether it was in fact Van Leeuwenhoek's ability to observe and reason clearly, or perhaps, the Royal Society's theories of life that might require reform. Finally in 1677,[30] Van Leeuwenhoek's observations were fully acknowledged by the Royal Society.[31]

    Antonie van Leeuwenhoek was elected to the Royal Society in February 1680 on the nomination of William Croone, a then-prominent physician.[note 5] Van Leeuwenhoek was "taken aback" by the nomination, which he considered a high honour, although he did not attend the induction ceremony in London, nor did he ever attend a Royal Society meeting.[33] He had his portrait painted by Jan Verkolje with the certificate signed by James II of England on the table beside him.

    Scientific fame

    By the end of the seventeenth century, Van Leeuwenhoek had a virtual monopoly on microscopic study and discovery. His contemporary

    Mary II of England and Thomas Molyneux (in 1685) visited. In October 1697, Van Leeuwenhoek visited the Tsar Peter the Great on his boat, moored in the Schie or the Arsenaal.[36] On this occasion he presented the Tsar with an "eel-viewer", so Peter could study blood circulation whenever he wanted.[37] In 1706 it was Govert Bidloo; in 1714 Richard Bradley (botanist), in 1716 Herman Boerhaave and Frederik Ruysch.[35] To the disappointment of his guests, Van Leeuwenhoek refused to reveal the cutting-edge microscopes he relied on for his discoveries, instead showing visitors a collection of average-quality lenses.[38]

    Techniques

    Van Leeuwenhoek was born near the Oostpoort. View of Delft from the east by Johannes Vermeer
    Delft, straatzicht Oosteinde vanaf de Oostpoort
    Van Leeuwenhoek lived at Oude Delft, near Warmoesbrug over Hippolytusbuurt

    Antonie van Leeuwenhoek made more than 500 optical lenses. He also created at least 25 single-lens microscopes, of differing types, of which only nine have survived. These microscopes were made of silver or copper frames, holding hand-made lenses. Those that have survived are capable of magnification up to 275 times. It is suspected that Van Leeuwenhoek possessed some microscopes that could magnify up to 500 times. Although he has been widely regarded as a dilettante or amateur, his scientific research was of remarkably high quality.[39]

    The single-lens microscopes of Van Leeuwenhoek were relatively small devices, the largest being about 5 cm long.[40][41] They are used by placing the lens very close in front of the eye. The other side of the microscope had a pin, where the sample was attached in order to stay close to the lens. There were also three screws to move the pin and the sample along three axes: one axis to change the focus, and the two other axes to navigate through the sample.

    Van Leeuwenhoek maintained throughout his life that there are aspects of microscope construction "which I only keep for myself", in particular his most critical secret of how he made the lenses.

    Novosibirsk State Medical Institute.[44] In May 2021 researchers in the Netherlands published a non-destructive neutron tomography study of a Leeuwenhoek microscope.[22] One image in particular shows a Stong/Mosolov-type spherical lens with a single short glass stem attached (Fig. 4). Such lenses are created by pulling an extremely thin glass filament, breaking the filament, and briefly fusing the filament end. The nuclear tomography article notes this lens creation method was first devised by Robert Hooke
    rather than Leeuwenhoek, which is ironic given Hooke's subsequent surprise at Leeuwenhoek's findings.

    Van Leeuwenhoek used samples and measurements to estimate numbers of microorganisms in units of water.[45][46] He also made good use of the huge advantage provided by his method. He studied a broad range of microscopic phenomena, and shared the resulting observations freely with groups such as the British Royal Society.[47] Such work firmly established his place in history as one of the first and most important explorers of the microscopic world. Van Leeuwenhoek was one of the first people to observe cells, much like Robert Hooke.[6] Van Leeuwenhoek wrote his letters in Dutch and sent them to the Royal Society; the letters were then translated into English. He corresponded with Antonio Magliabechi.[48]

    Discoveries

    Antoni van Leeuwenhoek. Mezzotint by J. Verkolje, 1686
    • Leeuwenhoek was one of the first to conduct experiments on himself. It was from his finger that blood was drawn for examination, and he placed pieces of his skin under a microscope, examining its structure in various parts of the body, and counting the number of vessels that permeate it.[49]
    • Both
      red blood cells.[50]
    • infusoria (protists in modern zoological classification), in 1674
    • in 1675 he was studying a variety of minerals, especially salts, and parts of plants and animals.
    • the vacuole of the cell in 1676
    • spermatozoa, in 1677
    • the banded pattern of
      muscular fibers
      , in 1682
    • bacteria, (e.g., large Selenomonads from the human mouth), in 1683[51][note 6][52][note 7]
    • It seems he used horseradish to find out what causes irritation on the tongue.[53] He used the effect of vinegar.
    • Leeuwenhoek diligently began to search for his animalcules.
      paradontitis.[54]
    • In 1684 he published his research on the ovary.[55]
    • In 1687, Van Leeuwenhoek reported his research on the coffee bean.[56][57] He roasted the bean, cut it into slices and saw a spongy interior. The bean was pressed, and an oil appeared. He boiled the coffee with rain water twice and set it aside.[58]
    • Leeuwenhoek corresponded regularly with
      States of Holland and in 1687 member of the board of the Delft chamber of the VOC
      .
    • In 1696
      Nicolaas Witsen send him a map of Tartary and ore found near the Amur in Siberia.[59]

    Van Leeuwenhoek has been recognized as the first person to use a

    histological stain to color specimens observed under the microscope using saffron.[60] He used this technique only once.[61][62]

    Like Robert Boyle and Nicolaas Hartsoeker, Van Leeuwenhoek was interested in dried cochineal, trying to find out if the dye came from a berry or an insect.[63][64][65][66]

    He studied rainwater, the seeds of oranges, worms in sheep's liver, the eye of a whale, the blood of fishes, mites, coccinellidae, the skin of elephants, Celandine, and Cinchona.[48]

    • Schematic drawings
      Van Leeuwenhoek's microscopes by Henry Baker
    • Leeuwenhoek Boerhaave museum
      Leeuwenhoek Boerhaave museum
    • See caption
      A replica of a microscope by Van Leeuwenhoek

    Legacy and recognition

    View on Fish- and Meatmarket in Delft, opposite of Van Leeuwenhoek's house
    Vleeshal Delft

    By the end of his life, Van Leeuwenhoek had written approximately 560 letters to the Royal Society and other scientific institutions concerning his observations and discoveries. Even during the last weeks of his life, Van Leeuwenhoek continued to send letters full of observations to London. The last few contained a precise description of his own illness. He suffered from a rare disease, an uncontrolled movement of the

    van Leeuwenhoek's disease.[67] He died at the age of 90, on 26 August 1723, and was buried four days later in the Oude Kerk in Delft.[68]

    In 1981, the British microscopist Brian J. Ford found that Van Leeuwenhoek's original specimens had survived in the collections of the Royal Society of London. They were found to be of high quality, and all were well preserved.[69][70][71] Ford carried out observations with a range of single-lens microscopes, adding to our knowledge of Van Leeuwenhoek's work.[72] In Ford's opinion, Leeuwenhoek remained imperfectly understood, the popular view that his work was crude and undisciplined at odds with the evidence of conscientious and painstaking observation. He constructed rational and repeatable experimental procedures and was willing to oppose received opinion, such as spontaneous generation, and he changed his mind in the light of evidence.[39]

    On his importance in the history of microbiology and science in general, the British biochemist Nick Lane wrote that he was "the first even to think of looking—certainly, the first with the power to see." His experiments were ingenious, and he was "a scientist of the highest calibre", attacked by people who envied him or "scorned his unschooled origins", not helped by his secrecy about his methods.[29]

    The

    Antoni van Leeuwenhoek Hospital in Amsterdam, named after Van Leeuwenhoek, is specialized in oncology.[73] In 2004, a public poll in the Netherlands to determine the greatest Dutchman ("De Grootste Nederlander") named Van Leeuwenhoek the 4th-greatest Dutchman of all time.[74]

    On 24 October 2016, Google commemorated the 384th anniversary of Van Leeuwenhoek's birth with a Doodle that depicted his discovery of "little animals" or animalcules, now known as unicellular organisms.[75]

    The

    Antonie van Leeuwenhoek: International Journal of General and Molecular Microbiology are named after him.[76]

    • Memorial of Antonie van Leeuwenhoek in the Oude Kerk in Delft
      Memorial of Antonie van Leeuwenhoek in the Oude Kerk in Delft
    • Gravestone with Dutch inscription
      Antonie van Leeuwenhoek is buried in the Oude Kerk.
    • Het Gouden Hoofd (Hippolytusbuurt 1–3, Delft).[77]
      Het Gouden Hoofd (Hippolytusbuurt 1–3, Delft).[77]

    See also

    A cluster of Escherichia coli bacteria magnified 10,000 times.

    Notes

    1. protozoology (recently known as protistology).[2][3]
    2. ^ The spelling of Van Leeuwenhoek's name is exceptionally varied. He was christened as Thonis, but always went by Antonj (corresponding with the English Antony). The final j of his given name is the Dutch tense i. Until 1683 he consistently used the spelling Antonj Leeuwenhoeck (ending in –oeck) when signing his letters. Throughout the mid-1680s he experimented with the spelling of his surname, and after 1685 settled on the most recognized spelling, Van Leeuwenhoek.[4]
    3. Latin for 'tiny animal')[9]
    4. ^ In A Short History of Nearly Everything (p. 236) Bill Bryson alludes to rumors that Vermeer's mastery of light and perspective came from use of a camera obscura produced by Van Leeuwenhoek. This is one of the examples of the controversial Hockney–Falco thesis, which claims that some of the Old Masters used optical aids to produce their masterpieces.
    5. ^ He was also nominated as a "corresponding member" of the French Academy of Sciences in 1699, but there is no evidence that the nomination was accepted, nor that he was ever aware of it.[32]
    6. ^ The "Lens on Leeuwenhoek" site, which is exhaustively researched and annotated, prints this letter in the original Dutch and in English translation, with the date 17 September 1683. Assuming that the date of 1676 is accurately reported from Pommerville (2014), that book seems more likely to be in error than the intensely detailed, scholarly researched website focused entirely on Van Leeuwenhoek.
    7. ^ Sixty-two years later, in 1745, a physician correctly attributed a diarrhea epidemic to Van Leeuwenhoek's "bloodless animals" (Valk 1745, cited by Moll 2003).

    References

    1. .
    2. .
    3. ^ Dobell, pp. 300–305.
    4. ). "We may fairly call Leeuwenhoek "The first microbiologist" because he was the first individual to actually culture, see, and describe a large array of microbial life. He actually measured the multiplication of the bugs. What is more amazing is that he published his discoveries."
    5. ^ . Retrieved 26 January 2018.
    6. ^ "Antony van Leeuwenhoek Biography |". Biography Online. Retrieved 27 April 2023.
    7. .
    8. ^ a b Anderson, Douglas. "Animalcules". Lens on Leeuwenhoek. Retrieved 9 October 2019.
    9. ^ "Antoni Van Leeuwenhoek | Encyclopedia.com". www.encyclopedia.com. Retrieved 29 July 2023.
    10. ^ Dobell, pp. 19–21.
    11. ^ Dobell, pp. 23–24.
    12. ^ The curious observer. Events of the first half of Van Leeuwenhoek's life. Lens on Leeuwenhoek (1 September 2009). Retrieved 20 April 2013.
    13. ^ Huerta, p. 31.
    14. ^ "'The Golden Head' – Antoni's house". Delft.com. Retrieved 14 February 2024.
    15. ^ Dobell, pp. 33–37.
    16. ^ Dobell, pp. 27–31.
    17. ^ Van Berkel, K. (24 February 1996). Vermeer, Van Leeuwenhoek en De Astronoom. Vrij Nederland (Dutch magazine), p. 62–67.
    18. ^ "The religious affiliation of Biologist A. van Leeuwenhoek". Adherents.com. 8 July 2005. Archived from the original on 7 July 2010. Retrieved 13 June 2010.
    19. ^ "The Religion of Antony van Leeuwenhoek". 2006. Archived from the original on 4 May 2006. Retrieved 23 April 2006.
    20. ^ A. Schierbeek, Editor-in-Chief of the Collected Letters of A. van Leeuwenhoek, Measuring the Invisible World: The Life and Works of Antoni van Leeuwenhoek F R S, Abelard-Schuman (London and New York, 1959), QH 31 L55 S3, LC 59-13233. This book contains excerpts of Van Leeuwenhoek's letters and focuses on his priority in several new branches of science, but makes several important references to his spiritual life and motivation.
    21. ^
      PMID 33990325
      .
    22. ^ Klaus Meyer: Das Utrechter Leeuwenhoek-Mikroskop. In: Mikrokosmos. Volume 88, 1999, S. 43–48.
    23. ^ Observationes microscopicae Antonii Lewenhoeck, circa particulas liquorum globosa et animalia. Acta Eruditorum. Leipzig. 1682. p. 321.
    24. ^ Dobell, pp. 37–41.
    25. ^ Dobell, pp. 41–42.
    26. ^ Dobell, pp. 43–44.
    27. ^ Anderson, Douglas. "Wrote Letter 18 of 1676-10-09 (AB 26) to Henry Oldenburg". Lens on Leeuwenhoek. Retrieved 3 March 2016.
    28. ^
      PMID 25750239
      .
    29. ^ Schierbeek, A.: "The Disbelief of the Royal Society". Measuring the Invisible World. London and New York: Abelard-Schuman, 1959. N. pag. Print.
    30. ^ Full text of "Antony van Leeuwenhoek and his "Little animals"; being some account of the father of protozoology and bacteriology and his multifarious discoveries in these disciplines;". Recall.archive.org. Retrieved 20 April 2013.
    31. ^ Dobell, pp. 53–54.
    32. ^ Dobell, pp. 46–50.
    33. ^ Dobell, pp. 52–53.
    34. ^ a b "Lens on Leeuwenhoek".
    35. ^ "Visited by Tsar Peter the Great of Russia | Lens on Leeuwenhoek".
    36. .
    37. ^ Dobell, pp. 54–61.
    38. ^ a b Brian J. Ford (1992). "From Dilettante to Diligent Experimenter: a Reappraisal of Leeuwenhoek as microscopist and investigator". Biology History. 5 (3).
    39. ^ Anderson, Douglas. "Tiny Microscopes". Lens on Leeuwenhoek. Archived from the original on 2 May 2015. Retrieved 3 March 2016.
    40. ^ Lens on Leeuwenhoek: How he made his tiny microscopes. Lensonleeuwenhoek.net. Retrieved 15 September 2013.
    41. ^ Moll 2003
    42. ^ "A glass-sphere microscope". Funsci.com. Archived from the original on 11 June 2010. Retrieved 13 June 2010.
    43. ^ A. Mosolov & A. Belkin (1980). "Секрет Антони ван Левенгука (N 122468)" [Secret of Antony van Leeuwenhoek?]. Nauka i Zhizn (in Russian). 09–1980: 80–82. Archived from the original on 23 September 2008.
    44. S2CID 85227243
      .
    45. .
    46. ^ "Robert Hooke (1635–1703)". Ucmp.berkeley.edu. Retrieved 13 June 2010.
    47. ^ a b "De 2e en de 3e Engelsche reeksen der brieven van Antoni van Leeuwenhoek (7e Bijdrage tot de Studie over de werken van den Stichter der Micrographie) door Prof. Dr. A.J.J. Vandevelde Werkend Lid der Koninklijke Vlaamsche Academie., Verslagen en mededelingen van de Koninklijke Vlaamse Academie voor Taal- en Letterkunde 1924".
    48. ^ a b "Levende Dierkens". Lens on Leeuwenhoek.
    49. ^ "1674: Perhaps will to many seem incredible". Lens on Leeuwenhoek.
    50. ^ Anderson, Douglas. "Wrote Letter 39 of 1683-09-17 (AB 76) to Francis Aston". Lens on Leeuwenhoek. Archived from the original on 20 August 2016. Retrieved 26 September 2016.
    51. .
    52. ^ "Микробы. Антони ван Левенгук".
    53. ^ "Brief No. 76 [39]. 17 September 1683., Alle de brieven. Deel 4: 1683-1684, Anthoni van Leeuwenhoek".
    54. ^ "Eyerstok | Lens on Leeuwenhoek".
    55. ^ "Wrote Letter L-187 of 1687-05-09 to members of the Royal Society about the structure of 'stone' of the medlar and the coffee bean and acid in plants | Lens on Leeuwenhoek".
    56. ^ "The Royal Society read and discussed part of Letter L-187 about coffee | Lens on Leeuwenhoek".
    57. ^ 9 May 1687, Missive 54.
    58. ^ Marion Peters (2010) De wijze koopman, Het wereldwijde onderzoek van Nicolaes Witsen (1641-1717), burgemeester en VOC-bewindhebber van Amsterdam. p. 139
    59. S2CID 29628388
      .
    60. ^ "Specimen preparation | Lens on Leeuwenhoek".
    61. ^ "Illumination | Lens on Leeuwenhoek".
    62. ^ Antoni van Leeuwenhoek; Samuel Hoole (1800). The Select Works of Antony van Leeuwenhoek, Containing His Microscopical Discoveries in Many of the Works of Nature. G. Sidney. pp. 213–.
    63. ^ Rocky Road: Leeuwenhoek. Strangescience.net (22 November 2012). Retrieved 20 April 2013.
    64. ^ "Wrote Letter L-194 of 1687-11-28 to members of the Royal Society about his discovery that cochineal was an insect and his experiments with cinchona bark | Lens on Leeuwenhoek".
    65. ^ Life and work of Antoni van Leeuwenhoek of Delft in Holland; 1632–1723 (1980) Published by the Municipal Archives Delft, p. 9
    66. .
    67. ^ Biology History vol 5(3), December 1992
    68. ^ The Microscope vol 43(2) pp 47–57
    69. ^ Spektrum der Wissenschaft pp. 68–71, June 1998
    70. ^ "The discovery by Brian J Ford of Leeuwenhoek's original specimens, from the dawn of microscopy in the 16th century". Brianjford.com. Retrieved 13 June 2010.
    71. ^ Antoni van Leeuwenhoek (in Dutch). Retrieved 25 October 2016.
    72. ^ "Fortuyn voted greatest Dutchman". 16 November 2004. Retrieved 26 March 2020.
    73. ^ New Google Doodle Celebrates Antoni van Leeuwenhoek, Inventor of Microbiology. Retrieved 24 October 2016.
    74. ^ Leeuwenhoek Medal and Lecture royalsociety.org accessed 24 October 2020
    75. ^ "Hippolytusbuurt 3, Leeuwenhoek's Home and Laboratory | Lens on Leeuwenhoek".

    Sources

    External links