Appalachia (landmass)

Source: Wikipedia, the free encyclopedia.

Map of North America during the Campanian

During most of the

pachycephalosaur and ankylosaurid dominated fauna of the western part of North America, known as "Laramidia".[6]

Due to high sea levels, subsequent erosion,

Woodbine Formation, Navesink Formation,[14] Ellisdale Fossil Site,[15] Mooreville Chalk Formation, Demopolis Chalk Formation, Black Creek Group and the Niobrara Formation,[16] together with ongoing research in the area,[17] have given us a better look into this forgotten world of paleontology
.

Geography

Appalachia stretched from

lambeosaur in the area.[19]

Range

Vertebrate fossils have been found along the Atlantic Seaboard as well as other states like Alabama, Georgia, North Carolina, South Carolina, Mississippi, Missouri, Kentucky, Tennessee, Kansas, Nebraska, Iowa, and Minnesota. Parts of Canada that were a part of Appalachia during the Cretaceous include, Manitoba, Ontario, Quebec, Nunavut, New Brunswick, Newfoundland and Labrador, and Nova Scotia.[20][21][22]

Fauna

Dinosaurs

From the Cenomanian to the Maastrichtian, Appalachia was inhabited by various groups of dinosaurs including, hadrosauroids, hadrosaurs, nodosaurs, leptoceratopsians, indeterminate ornithopods, tyrannosauroids, dromaeosaurs, ornithomimids, and indeterminate maniraptors lived in the area. There is also fossil evidence of possible chasmosaurs, lambeosaurs, sauropods, carcharodontosaurs, caenagnathids, troodontids, and coelurosaurs that might have inhabited the area.[23][24][6][25][26] In 2022, fossils unearthed from the Woodbine Formation in Texas confirmed that carcharodontosaurs, troodontids, and coelurosaurs did indeed inhabit Appalachia.[27]

Tyrannosaurs

In Late Cretaceous North America, the dominant predators were the

Teihivenator while other indeterminate fossils lie scattered throughout most of the southern United States like Georgia, North Carolina, and South Carolina. Fossil foot bones from Appalachian deposits indicate another, unnamed tyrannosauroid measuring 9 m (30 ft), indicating that diversity in these basal tyrannosauroids remained high during the Late Cretaceous.[31] These fossilized teeth possibly belong to a species of Appalachiosaurus or an undescribed species of a new tyrannosaur.[32][33] There is also the possibility of a fourth tyrannosaur known from Applachia known as Diplotomodon, but the genus is considered dubious. Fossils from New Jersey and Delaware, most notably in the Mt. Laurel Formation and Merchantville Formations, have revealed that the primitive tyrannosauroids were much more diverse than expected, and some of them grew to lengths of 8 to 9 meters long, making them around the same size as some of the more advanced tyrannosaurs found in Laramidia.[31][34] Fossils in Cenomanian deposits further indicate tyrannosauroids had been a constant presence in Appalachia since the Middle Cretaceous.[35]

Dromaeosaurs

The dryptosaurs were not the only predatory dinosaurs in Appalachia. Indeterminate

maniraptorans were present in Appalachia as well.[41]

Ornithomimids

Various

Coelosaurus, have also been reported from Appalachia from Missouri, Mississippi, Alabama, Georgia and as far north in states like Maryland, New Jersey, and Delaware, but it is now believed that some of these are the bones of juvenile dryptosaurs while others belong to various undescribed species of ornithomimids. As of 2019, no distinct species of ornithomimosaurs have been identified yet, mostly due to the fact that no complete skeleton has been unearthed yet. However, it can be assumed that most of them were around the same size of their Laramidian relatives, though there is one specimen that could have reached a large size similar to Gallimimus or Beishanlong.[42][43][39][44] In 2022, fossils from the Eutaw Formation from Mississippi revealed that large ornithomimids did indeed roam Appalachia.[45]

Other theropods

Fossils from the Woodbine Formation in Texas, one of the few fossil sites that is one of Appalachia's more well preserved fossils, reveal that other theropods might have roamed Appalachia around the time when the Western Interior Seaway first formed, they include possible specimens of allosauroids, troodontids, caenagnathids, dromaeosaurs, and tyrannosaurs.[23][24] The most of these being the carcharodontosaurid Acrocanthosaurus.[46][47]

Hadrosaurs

Another common group, arguably the most widespread species in the area,

saurolophines. Claosaurus is known from a specimen which floated into the Interior Seaway and was found in Kansas, might also be from Appalachia, since it was found closer to the Appalachia side of the seaway and is unknown from Western North America. Hadrosaur remains have even been found in Iowa, though in fragmentary remains,[64] Tennessee, most notably from the Coon Creek Formation.[65][66]

Hypsibema crassicauda,

In 2020, the remains of one small-bodied hadrosaur and two small-bodied hadrosauromorphs were unearthed in the New Egypt Formation in New Jersey. The fossils were dated to the Maastrichtian, which was the last stage of the Cretaceous period that ended with the extinction the dinosaurs. This information would imply that Appalachia probably had a rich diversity of life, but research will be need in order to get a better picture of this lost world.[73] In 2021, new remains of Hypsibema missouriensis, also known as Parrosaurus missouriensis, were unearthed in Missouri.[74][75][76]

Lambeosaurs

Indeterminate

Nova Scotia, Canada. It cannot yet be explained how lambeosaurines might have reached Appalachia though some have theorized that a land bridge must have formed sometime during the Campanian.[77] In 2020, a forelimb belonging to a lambeosaur was unearthed in the New Egypt Formation from New Jersey with evidence of sharks scavenging on its remains.[78]

Ornithopods

While ornithopod fossils have been unearthed in the eastern United States in the past, including footprints in Virginia,[79] they primarily belonged to scrappy remains and couldn't be described as distinct species, with the exception being Tenontosaurus.[80][81][82] However, this all changed with the descriptions of Convolosaurus and Ampelognathus from early Cretaceous and late Cretaceous Texas, respectively.[83][84]

Nodosaurs

The nodosaurids, a group of large, herbivorous armored dinosaurs resembling armadillos, are another testament to Appalachia's difference from Laramidia. During the early Cretaceous, the nodosaurids prospered and were one of the most widespread dinosaurs throughout North America. However, by the latest Cretaceous, nodosaurids were scarce in western North America,[85] limited to forms like Edmontonia, Denversaurus and Panoplosaurus; perhaps due to competition from the ankylosauridae; though they did thrive in isolation, most notably in Appalachia, as mentioned earlier and in the case of Struthiosaurus,[86] Europe as well. Nodosaurid scutes have been commonly found in eastern North America, while fossil specimens are very rare. Often the findings are not diagnostic enough to identify the species, but the remains attest to a greater number of these armored dinosaurs in Appalachia. Multiple specimens have been unearthed in Kansas[87] in the Niobrara Formation, Alabama in Ripley Formation,[88] Mississippi, Delaware, Maryland and New Jersey, possibly belonging to a multitude of different species.[89] Five possible and best-known examples of Appalachian nodosaurids, from both the early and late Cretaceous period, include Priconodon, Propanoplosaurus, Niobrarasaurus,[90][91] Silvisaurus[92] and possibly Hierosaurus,[93] though its validity is disputed. Just like the Claosaurus specimen, it is possible that the specimens of Niobrarasaurus, Silvisaurus and Hierosaurus floated into the Interior Seaway from the east, since these two species of nodosaurids were discovered in the famous chalk formations[94] of Kansas and are not known from any location from Western North America. Kansas was also a part of Appalachia when the other parts were covered by oceans, which were a part of the Western Interior Seaway.

Leptoceratopsians

While remains of the advanced ceratopsians, most notably the

island hopped during the time that the Western Interior Seaway split the North American continent into two different land masses in a way that some species of leptoceratopsids, most notably Ajkaceratops, were able to reach Europe.[101][102] It should also be noted that there is a distinct difference with how the leptoceratopsians evolved in Appalachia and Laramida. The Appalachian leptoceratopsian that was unearthed in the Tar Heel Formation, which grew to the size of a large dog, had a more slender jaw that teeth that curved downward and outward in its beak. This would imply a specialized feeding strategy for feeding on the foliage that was native to Appalachia during the Campanian.[103]

Birds

Several bird remains are known from Appalachian sites, most of them

Neornithes in the Late Cretaceous. However, this issue is still under debate. Examples of birds that were endemic to Appalachia include a few groups such as the charadriiformes, which consisted of Graculavus and Telmatornis, anseriformes as represented by Anatalavis, procellariiformes with Tytthostonyx being a representative of the group, and Palaeotringa and Laornis belonging to a currently unknown group of birds.[104] Hesperornithid fossils have also been unearthed in Arkansas.[109] Some birds found in Canada such as Tingmiatornis and Canadaga were found in areas that were a part of Appalachia.[110][111] Enantiornithine birds are also known from Appalachia, as is the case of Flexomornis from the Woodbine Formation from Texas.[112]

Non-dinosaur herpetofauna

Amphibians

Through the Ellisdale Fossil Site, a good picture of Appalachia's amphibian fauna is present. Amidst lissamphibians, there is evidence for sirenids (including the large Habrosaurus), the batrachosauroidid salamander Parrisia, hylids, and possible representatives of Eopelobates and Discoglossus. These show close similarities to European faunas, but aside from Habrosaurus (which is also found on Laramidia) there is a high degree of endemism, suggesting no interchanges with other landmasses throughout the Late Cretaceous.[113]

Lizards

There is also a high degree of endemism in regards to its reptilian fauna: among squamates, the

necrosaurids
are also known.

No fossilized remains of snakes have been discovered in Appalachia during the Cretaceous period, only being found in Laramidia.[114]

Turtles

Amidst turtles, which are rather common finds in Appalachia, Adocus, Apalone, and Bothremys are well represented, the latter in particular more common in Appalachian sites than Laramidian ones. Pleurochayah, a bothremyid, is known from Texas.[115] In Santonian Alabama occurred the giant endemic Appalachemys.[116]

Crocodiles

Crocodiles were rather abundant in Appalachia with nine local

crocodilian genera belonging to several confirmed families, with the possibility of much more undiscovered crocodiles waiting to be unearthed. Goniopholididae is represented by Dakotasuchus [117] and Woodbinesuchus,[118] Alligatoridae is represented by Bottosaurus,[119] Neosuchia is represented by Scolomastax[120] and Deltasuchus,[121] Alligatoroidea are presented Deinosuchus and Leidyosuchus, Gavialoidea are represented by Thoracosaurus,[122] Eothoracosaurus,[123] and Crocodilia is presented by Borealosuchus,[124] are well established in Laramidia as well, probably indicative of their ocean crossing capacities. Deinosuchus,[125] being one of the largest crocodilians of the fossil record,[126] was an apex predator that did prey on the dinosaurs[127][128][129] in the area, the same case applies for Laramidia as well,[130][131] despite the fact that the majority of its diet consisted of turtles[132] and sea turtles.[133][134] However, crocodiles still preyed on the endemic dinosaurs whenever they got the chance to do so; there is evidence of crocodile bite marks on the femur of large ornithomimosaur that indicates the predatory behavior of native crocodiles.[135] Fossils unearthed in South Carolina and New Jersey shows that some of the crocodilians endemic to Appalachia survived the extinction of the dinosaurs and even persisted into the Cenozoic.[136][137]

Dyrosauridae

Dyrosauridae, most notably Dyrosaurus and Hyposaurus fossils, are also known form Appalachia, particularly in New Jersey, Alabama, and South Carolina.[138]

Pholidosauridae

Only one species of

pholidosaurid is known to have lived in Appalachia; Terminonaris whose remains have been unearthed in Texas and Kansas.[139][140]

Pterosaurs

Geosternbergia, Dawndraco, and Alamodactylus.[150] Members of the Ornithocheiridae and Anhangueridae are represented by Aetodactylus and Cimoliopterus respectively.[151]

Choristodera

The remains of indeterminate choristoderans have turned up in the Navesink Formation; the only known genus of choristodere during the Late Cretaceous was Champsosaurus.[152] As a whole Appalachian choristodere fossils are very rare, speculated to the result of the lack of a suitable cold freshwater environment as seen in Laramidia at similar latitudes; the animals are speculated to have been more common at higher latitudes and altitudes.[152]

Mammals

Several types of

Metatherians are also known, including an alphadontid,[156] a stagodontid,[157] and a herpetotheriid.[158] Unlike ptilodontoideans, metatherians show a lesser degree of endemism, implying a degree of interchange with Laramidia and Europe. Research in this area has revealed that the Taeniolabidoidea mammals can trace their origins here and that there were several species of multituberculates endemic to Appalachia.[159] Eutheria fossils, most notably molars, have also been unearthed in Mississippi. It is possible that they belong to a creature rather reminiscent to Protungulatum.[160] The genus Alphadon as well as other members of the Allotheria family have had their remains unearthed in New Jersey.[161]

Marine life

While not much was known about Appalachia's land-based fauna until recently, the marine life that in the area, as well as the life that lived in the nearby Western Interior Seaway, has been well studied by paleontologists for years. Such examples of fossil sites that have preserved the remains of marine life from that period include the Niobrara Formation, the Demopolis Chalk Formation, and the Mooreville Chalk Formation are just a few examples of the fossil sites that have successfully preserved the skeletal remains of various marine creatures from the Cretaceous.

plesiosaurs, and mosasaurs, which were the apex predators of their environment at the time.[170][171]

Plesiosaur fossils, belonging to the genus Cimoliasaurus, have been unearthed in New Jersey.[172] Mosasaur remains have also been unearthed in Missouri.[173]

Fish fossils are rather common throughout Appalachia, especially in locations abundant in marl, shale, and limestone.[174][175] Fish fossils, as well as a lot of Cretaceous era marine fauna, are rather abundant in regions like the Niobrara Formation in Kansas, which is made up of shale, sandstone and limestone, as well as the Woodbury Formation in New Jersey.[176][177]

Arthropods

Many species of arthropods are known from the Turonian aged New Jersey amber, situated on the Atlantic coast of Appalachia. Arthropods are also known from the Cenomanian aged Redmond Formation of Labrador, Canada.

Flora

While the fossil sites from the southern part in Appalachia, places like Alabama and the Carolinas, have a very scant amount of Cretaceous plant fossils with the exception of Georgia, the northern parts of Appalachia, such as New Jersey, Maryland, and Delaware have a much better record in terms of plant species being unearthed there, especially with fossils sites like the

pomegranates were present in the area during the Cretaceous.[181] There is also a huge concentration of Normapolles unearthed in the southeastern United States, suggesting that there was a distinct phytogeography through the area during the Cretaceous.[182]

Fossils unearthed near from the

gametophytes, Detrusandra, Hamamelidaceae, Actinidiaceae, and a multitude of 63 species of plants have been unearthed in this region.[184] Angiosperm plants have been found in the Woodbine Formation.[185] Pinaceae and Lauraceae fossils have been unearthed in Mississippi and North Carolina respectively.[186][187]

Plant fossils found in Massachusetts and Rhode Island indicate that the climate here was sub-humid and paratropical too, indicating that some of Appalachia's habitats largely consisted of

deciduous forests.[188] Plants of Pinaceae, Taxodioideae, Araucariaceae, Taxaceae, Cycas and Thallophyte have been found in Georgia and South Carolina.[189]

See also

References

  1. .
  2. .
  3. ^ Erickson, J. Mark (December 1999). "The Dakota Isthmus – Closing the Late Cretaceous Western Interior Seaway". North Dakota Academy of Science Proceedings. 53: 124–129. Retrieved 15 June 2019.
  4. .
  5. .
  6. ^ .
  7. .
  8. .
  9. ^ Uren, Adam. "Dinosaurs in Minnesota: Fossil claw found in Iron Range has scientists excited". Bring Me the News. Retrieved 10 October 2015.
  10. ^ Sawyer, Liz. "Fossil adds to evidence of dinosaurs in Minnesota". Star Tribune. Retrieved 8 October 2015.
  11. ^ "Fossil finds behind N.J. strip mall causing excitement". CBS Evening News. 16 November 2014. Retrieved 16 November 2014.
  12. ^ Anonymous. "Rare fossil of a horned dinosaur found from 'lost continent'". University of Bath News. University of Bath. Retrieved 30 November 2015.
  13. ^ Anderson, Natali (26 January 2016). "Eotrachodon orientalis: New Duck-Billed Dinosaur Species Discovered". Science News.com. Science News. Retrieved 26 January 2016.
  14. .
  15. .
  16. ^ "Oceans of Kansas".
  17. .
  18. .
  19. .
  20. ^ King, David T. Jr. "Late Cretaceous Dinosaurs of the Southeastern United States". auburn.edu. Auburn University. Retrieved 9 January 2019.
  21. ^ "Figure 1".
  22. ^ "Figure 2".
  23. ^ .
  24. ^ .
  25. .
  26. ^ King, James L. (18 October 2009). "DINOSAURIAN FAUNA OF THE SOUTHEASTERN UNITED STATES". Geological Society of America Abstracts with Programs. 41 (7): 106. Archived from the original on 23 April 2020. Retrieved 16 June 2019.
  27. PMID 35127286
    .
  28. .
  29. . Retrieved 11 July 2011.
  30. .
  31. ^ a b Brownstein, Chase (December 2018). "LARGE BASAL TYRANNOSAUROIDS FROM THE MAASTRICHTIAN AND TERRESTRIAL VERTEBRATE DIVERSITY IN THE SHADOW OF THE K-PG EXTINCTION". The Mosasaur. X: 105–110. Retrieved 7 January 2019.
  32. ^ Chan-gyu, Yun (2017). "Teihivenator gen. nov., a new generic name for the Tyrannosauroid Dinosaur "Laelaps" macropus (Cope, 1868; preoccupied by Koch, 1836)". Journal of Zoological and Bioscience Research. 4. Archived from the original on 29 July 2017. Retrieved 23 July 2017.
  33. S2CID 86243316
    .
  34. .
  35. .
  36. ^ Kiernan, Caitlin R.; Schwimmeri, David R. (January 2004). "First Record of a Velociraptorine Theropod (Tetanurae, Dromaeosauridae) from the Eastern Gulf Coastal United States". The Mosasaur. 7: 89–93. Retrieved 7 May 2004.
  37. ^ Westfall, Aundrea. "Dromaeosaurs". Encyclopedia of Alabama. Retrieved 18 May 2016.
  38. S2CID 135459468
    .
  39. ^ a b Fix, Michael F. "Dinosauria and Associated Vertebrate Fauna of the Late Cretaceous Chronister Site of Southeast Missouri". Geological Society of America. Retrieved 1 April 2004.
  40. . Retrieved 14 June 2019.
  41. .
  42. ^ Baird, D.; Horner, J. (1979). "Cretaceous dinosaurs of North Carolina". Brimleyana. 2: 1–28.
  43. .
  44. ^ Brownstein, Chase Doran (24 July 2017). "Theropod specimens from the Navesink Formation and their implications for the Diversity and Biogeography of Ornithomimosaurs and Tyrannosauroids on Appalachia". PeerJ Preprints. e3105v1. Retrieved 23 December 2019.
  45. PMID 36260601
    .
  46. . Retrieved 15 October 2023.
  47. .
  48. ^ King, David T. Jr. "Late Cretaceous Dinosaurs of the Southeastern United States". aubrun.edu. Auburn University Press. Retrieved 14 September 2016.
  49. JSTOR 4064414
    .
  50. .
  51. .
  52. .
  53. ^ Bolotsky, Y.L. & Kurzanov, S.K. 1991. [The hadrosaurs of the Amur Region.] In: [Geology of the Pacific Ocean Border]. Blagoveschensk: Amur KNII. 94-103. [In Russian]
  54. ^ Godefroit, P.; Bolotsky, Y. L.; Van Itterbeeck, J. (2004). "The lambeosaurine dinosaur Amurosaurus riabinini, from the Maastrichtian of Far Eastern Russia". Acta Palaeontologica Polonica. 49 (4): 585–618.
  55. S2CID 128603347
    .
  56. .
  57. ^ Rubén D. Juárez Valieri; José A. Haro; Lucas E. Fiorelli; Jorge O. Calvo (2010). "A new hadrosauroid (Dinosauria: Ornithopoda) from the Allen Formation (Late Cretaceous) of Patagonia, Argentina" (PDF). Revista del Museo Argentino de Ciencias Naturales. New Series. 11 (2): 217–231. Archived from the original (PDF) on 3 September 2011. Retrieved 13 September 2016.
  58. S2CID 131243139
    .
  59. .
  60. ^ Lund, Eric K.; Gates, Terry A. (January 2006). "A Historical and Biogeographical Examination of Hadrosaurian Dinosaurs". New Mexico Museum of Natural History and Science Bulletin. 35: 263.
  61. JSTOR 1302869
    .
  62. ^ "Research team identifies rare dinosaur from Appalachia". 21 January 2016. Retrieved 11 September 2016. {{cite journal}}: Cite journal requires |journal= (help)
  63. .
  64. ^ Witzke, Brian J. (12 August 2014). "Dinosaurs in Iowa". Iowa Geological Society. Iowa Department of Natural Resources, University of Iowa. Archived from the original on 27 October 2014. Retrieved 12 August 2014.
  65. S2CID 131235991
    . Retrieved 11 September 2016.
  66. ^ Markin, Walter L.; Gibson, Michael A. (3 November 2010). "Discovery of a Second Hadrosaur From the Late Cretaceous Coon Creek Formation, West Tennessee". Geological Society of America Abstracts with Programs. 42 (5): 631.
  67. ^ Cope, E.D. (1869). "Remarks on Eschrichtius polyporus, Hypsibema crassicauda, Hadrosaurus tripos, and Polydectes biturgidus". Proceedings of the Academy of Natural Sciences of Philadelphia. 21: 191–192.
  68. PMID 22719869
    .
  69. ^ Chase (22 June 2015). "Antediluvian Beasts of the East: Hypsibema crassicauda". thetetanuraeguy.wordpress.com. Retrieved 22 June 2015.
  70. JSTOR 1299165
    .
  71. ^ "Welcome to the Fossil Prep Lab!". Bollinger County Museum of Natural History. Archived from the original on 23 June 2016. Retrieved 13 September 2016.
  72. S2CID 55810951
    .
  73. . Retrieved 7 April 2021.
  74. ^ Snider, Mike. "Show-Me-a-saurus! Skeleton of a new type of dinosaur unearthed in Missouri". USA TODAY. Retrieved 1 December 2021.
  75. ^ Sherry Liang (25 November 2021). "Missouri dig site is home to at least 4 rare dinosaurs, and there could be more". CNN. Retrieved 1 December 2021.
  76. ^ "Remains of 30ft duck-billed dinosaur unearthed in Missouri". news.yahoo.com. 24 November 2021. Retrieved 1 December 2021.
  77. ^ Chase (30 July 2015). "A response to The Tetrapod Zoology Podcast #45: Why Lambeosaurines did, in fact, persist into the Maastrichtian". An Odyssey of Time. Anonymous. Retrieved 30 July 2015.
  78. . Retrieved 5 April 2021.
  79. .
  80. ^ Main, Derek Jason (22 July 2013). "Appalachian Delta Plain Paleoecology Of The Cretaceous Woodbine Formation At The Arlington Archosaur Site, North Texas". {{cite journal}}: Cite journal requires |journal= (help)
  81. ISSN 1094-8074
    .
  82. .
  83. .
  84. .
  85. ^ Bakker, Robert T. (1988). "Review of the Late Cretaceous nodosauroid Dinosauria: Denversaurus schlessmani, a new armor-plated dinosaur from the Latest Cretaceous of South Dakota, the last survivor of the nodosaurians, with comments on Stegosaur-Nodosaur relationships". Hunteria. 1 (3): 1–23.
  86. S2CID 140174401
    .
  87. ^ "Approximate location of Smoky Hill Chalk nodosaur remains". Retrieved 13 September 2016.
  88. ^ Bruns, Michael E. "New Appalachian Armored Dinosaur Material (Nodosauridae, Ankylosauria) From the Maastrichtian Ripley Formation of Alabama". The Geological Society of America. Retrieved 1 April 2016.
  89. ^ Ebersole, Jun. "Nodosaur". Encyclopedia of Alabama. Retrieved 18 May 2016.
  90. S2CID 86252250
    .
  91. .
  92. .
  93. .
  94. .
  95. ^ "Amazing horned dinosaurs unearthed on 'lost continent'; New discoveries include bizarre beast with 15 horns". ScienceDaily. University of Utah. Retrieved 22 September 2010.
  96. ^ Anonymous (14 September 2015). "A new Leptoceratopsid Ceratopsian From Campanian Cretaceous Appalachia". The Dragon's Tales. Retrieved 14 September 2015.
  97. .
  98. ^ Brantley, Mary Grace. "Paleontologists make big dinosaur discovery in Mississippi". MSNewsNow. Archived from the original on 31 August 2016. Retrieved 14 September 2016.
  99. ^ Fleet, Micah (29 July 2016). "Rare dinosaur tooth found in Mississippi". wapt.com. 16 WAPT News. Retrieved 14 September 2016.
  100. ^ David R., Schwimmer. "Was There a Southeastern Dinosaur Province in the Late Cretaceous?". 1 April 2016. Geological Society of America. Retrieved 12 September 2016.
  101. S2CID 205220451
    .
  102. .
  103. .
  104. ^ .
  105. .
  106. .
  107. ^ Palaeogene Fossil Birds
  108. ^ A lithornithid (Aves: Palaeognathae) from the Paleocene (Tiffanian) of southern California
  109. S2CID 83921936
    . Retrieved 13 June 2019.
  110. .
  111. ^ Hou (1999). "New hesperornithid (Aves) from the Canadian Arctic". Vertebrata PalAsiatica. 37 (7): 228–233.
  112. S2CID 84037461
    .
  113. .
  114. ^ Holman, J. Alan (22 May 2000). Fossil Snakes of North America: Origin, Evolution, Distribution, Paleoecology. Bloomington, Indiana: Indiana University Press. p. 376.
  115. PMID 34017016
    .
  116. .
  117. .
  118. .
  119. .
  120. . Retrieved 22 November 2021.
  121. .
  122. .
  123. .
  124. .
  125. ^ Schwimmer, David R. (12 June 2002). King of the Crocodylians: The Paleobiology of Deinosuchus. Bloomington, IN: Indiana University Press. p. 240.
  126. S2CID 4402210
    .
  127. ^ Handwerk, Brian (25 March 2010). "Feces, Bite Marks Flesh Out Giant Dino-Eating Crocs". National Geographic News. Archived from the original on 27 March 2010. Retrieved 25 March 2010.
  128. S2CID 225240071
    . Retrieved 22 November 2021.
  129. .
  130. ^ RIVERA-SYLVA, Héctor E.; FREY, Eberhard; GUZMÁN-GUTIÉRREZ, José Rubén (2009). "Evidence of predation on the vertebra of a hadrosaurid dinosaur from the Upper Cretaceous (Campanian) of Coahuila, Mexico". Carnets de Géologie: 1–7. Archived from the original on 28 September 2016. Retrieved 12 September 2016.
  131. ^ Rivera-Sylva, Hector E.; W.E. Hone, David; Dodson, Peter (2012). "Bite marks of a large theropod on an hadrosaur limb bone from Coahuila, Mexico" (PDF). Boletín de la S ociedad GeolóGica Mexicana. 64 (1): 157–161.
  132. ^ Milan, J; Lucas, Spencer G.; Lockley, M G; Schwimmer, David R. (January 2010). "Bite Marks of the Giant Crocodylian Deinosuchus on Late Cretaceous (Campanian) Bones". New Mexico Museum of Natural History and Science Bulletin. 51: 183–190.
  133. ^ Harrell, Samantha D.; Schwimmer, David R. (2010). "Coprolites of Deinosuchus and other crocodylians from the Upper Cretaceous of western Georgia, USA". New Mexico Museum of Natural History and Science Bulletin. 51: 1–7.
  134. OCLC 488797149.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  135. .
  136. .
  137. .
  138. doi:10.13140/RG.2.1.2253.2724. Retrieved 4 January 2019. {{cite journal}}: Cite journal requires |journal= (help
    )
  139. .
  140. .
  141. .
  142. ^ Westfall, Aundrea. "Pterosaurs". Encyclopedia of Alabama. Retrieved 26 August 2016.
  143. JSTOR 4522837
    .
  144. ^ Harrell, T. Lynn Jr.; Gibson, Michael A.; Langston, Wann Jr. (1 December 2016). "A cervical vertebra of Arambourgiania philadelphiae (Pterosauria, Azhdarchidae) from the late Campanian micaceous facies of the Coon Creek Formation in McNairy County, Tennessee, USA". Bull. Alabama Mus. Nat. Hist. 33: 94–103.
  145. ^ Gibson, Michael A. "Review of Vertebrate Diversity n the Coon Creek Formation Lagerstätte (Late Cretaceous) of Western Tennessee". Geological Society of America. Retrieved 31 March 2008.
  146. .
  147. .
  148. .
  149. .
  150. .
  151. .
  152. ^ .
  153. ^ Baird, D.; Krause, D.W. (1 May 1979). "Late Cretaceous mammals east of the North American Western Interior Seaway". Journal of Paleontology. 53 (3). Retrieved 13 September 2016.
  154. ^ Denton, Robert K. Jr. "Late Cretaceous Mammals of the Carolinas". gsa.confex.com. The Geological Society of America. Retrieved 1 April 2016.
  155. ^ Late Cretaceous Multituberculates of the Carolinas: My...What Big Teeth You Have!
  156. ^ .
  157. ^ Denton, R. K. Jr., & O’Neill, R. C., 2010, A New Stagodontid Metatherian from the Campanian of New Jersey and its implications for a lack of east-west dispersal routes in the Late Cretaceous of North America. Jour. Vert. Paleo. 30(3) supp.
  158. S2CID 39202343
    .
  159. .
  160. .
  161. .
  162. ^ "OCEANS OF KANSAS PALEONTOLOGY Fossils from the Late Cretaceous Western Interior Sea". Retrieved 12 June 2019.
  163. ^ Everhart, Mike. "A Field Guide to Fossils of the Smoky Hill Chalk Part 2: Sharks and Bony Fish". Oceans of Kansas. Retrieved 12 June 2019.
  164. ^ Everhart, Mike. "A Field Guide to the Smoky Hill Chalk Part 1: Invertebrates". Oceans of Kansas. Retrieved 12 June 2019.
  165. ^ Everhart, Mike. "A Field Guide to Fossils of the Smoky Hill Chalk Part 3: Marine Reptiles". Oceans of Kansas. Retrieved 12 June 2019.
  166. ^ Everhart, Mike. "A Field Guide to Fossils of the Smoky Hill Chalk Part 4: Pteranodons, Birds, and Dinosaurs". Oceans of Kansas. Retrieved 12 June 2019.
  167. ^ Everhart, Mike. "A Field Guide to Fossils of the Smoky Hill Chalk Part 5: Coprolites, pearls, fossilized wood and other remains". Oceans of Kansas. Retrieved 12 June 2019.
  168. ^ Everhart, Mike. "M. J. EVERHART'S MARINE REPTILE REFERENCES: MOSASAURS, PLESIOSAURS, TURTLES AND OTHER VERTEBRATE FAUNA". Oceans of Kansas. Retrieved 12 June 2019.
  169. ^ Everhart, Mike. "Other references about fossils from the Late Cretaceous Western Interior Sea, including: Invertebrates, sharks and fish". Oceans of Kansas. Retrieved 12 June 2019.
  170. S2CID 130280406
    .
  171. .
  172. .
  173. .
  174. .
  175. .
  176. ^ Cockerell, T. D. A.; Stanton, T. W. (1915). "SOME AMERICAN CRETACEOUS FISH SCALES, WITH NOTES ON THE CLASSIFICATION AND DISTRIBUTION OF -CRETACEOUS FISHES" (PDF). United States Geological Survey Bulletin. 603: 34–57. Retrieved 20 December 2019.
  177. S2CID 132425261
    .
  178. ^ Lauginiger, Edward M. (September 1988). "Cretaceous Fossils from the Chesapeake and Delaware Canal" (PDF). Delaware Geological Survey: 61.
  179. S2CID 88231136
    .
  180. ^ "22A; Veatch & Stephenson 1911 Cretaceous Material". Georgias Fossils. Retrieved 11 June 2019.
  181. ^ Murray (1974). Minnesota. pp. 162–163.
  182. .
  183. .
  184. .
  185. .
  186. .
  187. .
  188. .
  189. ^ Berry, Edward Wilbur (1914). "The Upper Cretaceous and Eocene floras of South Carolina and Georgia". US Government Printing Office. 84.