Archaeological science

Source: Wikipedia, the free encyclopedia.
(Redirected from
Archaeometry
)

Archaeological science consists of the application of

methodologies of archaeology. Martinón-Torres and Killick distinguish ‘scientific archaeology’ (as an epistemology) from ‘archaeological science’ (the application of specific techniques to archaeological materials).[1] Martinón-Torres and Killick claim that ‘archaeological science’ has promoted the development of high-level theory in archaeology. However, Smith rejects both concepts of archaeological science because neither emphasize falsification or a search for causality.[2]

In the United Kingdom, the Natural and Environmental Research Council provides funding for archaeometry separate from the funding provided for archaeology.[3]

Types of archaeological science

Archaeological science can be divided into the following areas:[4]

  • physical and chemical dating methods which provide archaeologists with absolute and relative chronologies
  • artifact studies
  • environmental approaches which provide information on past landscapes, climates, flora, and fauna; as well as the diet, nutrition, health, and pathology of people
  • mathematical methods for data treatment (including computer-based methods)
  • remote-sensing and geophysical-survey techniques for buried features
  • conservation sciences
    , involving the study of decay processes and the development of new methods of conservation

Techniques such as lithic analysis, archaeometallurgy, paleoethnobotany, palynology and zooarchaeology also form sub-disciplines of archaeological science.

Dating techniques

Archaeological science has particular value when it can provide absolute dates for archaeological

dating
techniques include:

Artifact studies

Another important subdiscipline of archaeometry is the study of artifacts. Archaeometrists have used a variety of methods to analyze artifacts, either to determine more about their composition, or to determine their provenance. These techniques include:

Lead, strontium and oxygen isotope analysis can also test human remains to estimate the diets and even the birthplaces of a study's subjects.

Provenance analysis has the potential to determine the original source of the materials used, for example, to make a particular artifact. This can show how far the artifact has traveled and can indicate the existence of systems of exchange.[5]

Influence of archaeometry

Archaeometry has greatly influenced modern archaeology. Archaeologists can obtain significant additional data and information using these techniques, and archaeometry has the potential to revise the understanding of the past. For example, the "second

radiocarbon revolution
" significantly re-dated European prehistory in the 1960s, compared to the "first radiocarbon revolution" from 1949.

Locating archaeological sites

Archaeometry is an important tool in finding potential dig sites. The use of

geophysical surveys often help to identify and map archaeological features within identified sites.[6]

See also

  • Post excavation
  • Dating methodology (archaeology)

References

  1. ^ Marcos Martinón-Torres and David Killick. Archaeological Theories and Archaeological Sciences in "The Oxford Handbook of Archaeological Theory". Oxford University Press.
  2. S2CID 151767590
    .
  3. ^ Killick, D; Young, SMM (1997). Archaeology and Archaeometry: From Casual Dating to a Meaningful Relationship?. Antiquity.
  4. ^ Tite, M.S. (1991) Archaeological Science - past achievements and future prospects. Archaeometry 31 139-151.
  5. ^ Lambert, JB (1997). Traces of the Past: Unraveling the Secrets of Archaeology Through Chemistry. Addison-Wesley.
  6. ^ Aitken, MJ (1961). Physics and Archaeology. Interscience Publishers.