Archaeplastida
Archaeplastida Temporal range:
| |
---|---|
Scientific classification | |
Domain: | Eukaryota |
Clade: | Diaphoretickes |
Clade: | CAM |
Clade: | Archaeplastida Adl et al., 2005[1] |
Subgroups | |
| |
Synonyms | |
|
The Archaeplastida (or kingdom
The cells of the Archaeplastida typically lack
The archaeplastidans fall into two main evolutionary lines. The red algae are pigmented with chlorophyll a and phycobiliproteins, like most cyanobacteria, and accumulate starch outside the chloroplasts. The green algae and land plants – together known as Viridiplantae (Latin for "green plants") or Chloroplastida – are pigmented with chlorophylls a and b, but lack phycobiliproteins, and starch is accumulated inside the chloroplasts.[14] The glaucophytes have typical cyanobacterial pigments, but their plastids (called cyanelles) differ in having a peptidoglycan outer layer.[1]
Archaeplastida should not be confused with the older and obsolete name Archiplastideae, which refers to cyanobacteria and other groups of bacteria.[15][16]
Taxonomy
The consensus in 2005, when the group consisting of the glaucophytes and red and green algae and land plants was named 'Archaeplastida', The assumption made here is that Archaeplastida is a valid clade.
Various names have been given to the group. Some authors have simply referred to the group as plants or Plantae.[26][27] However, the name Plantae is ambiguous, since it has also been applied to less inclusive clades, such as Viridiplantae and embryophytes. To distinguish, the larger group is sometimes known as Plantae sensu lato ("plants in the broad sense").
To avoid ambiguity, other names have been proposed. Primoplantae, which appeared in 2004, seems to be the first new name suggested for this group.[5] Another name applied to this node is Plastida, defined as the clade sharing "plastids of primary (direct prokaryote) origin [as] in Magnolia virginiana Linnaeus 1753".[28]
Although many studies have suggested the Archaeplastida form a monophyletic group,[29] a 2009 paper argues that they are in fact paraphyletic.[23] The enrichment of novel red algal genes in a recent study demonstrates a strong signal for Plantae (Archaeplastida) monophyly and an equally strong signal of gene sharing history between the red/green algae and other lineages.[25] This study provides insight on how rich mesophilic red algal gene data are crucial for testing controversial issues in eukaryote evolution and for understanding the complex patterns of gene inheritance in protists.
The name Archaeplastida was proposed in 2005 by a large international group of authors (Adl et al.), who aimed to produce a classification for the
Archaeplastida:
- Glaucophyta Skuja, 1954 (Glaucocystophyta Kies & Kremer, 1986) – glaucophytes
- Glaucophytes are a small group of freshwater single-celled algae. Their chloroplasts, called cyanelles, have a peptidoglycan layer, making them more similar to cyanobacteria than those of the remaining Archaeplastida.
- RhodophyceaeThuret, 1855, emend. Rabenhorst, 1863, emend. Adl et al., 2005 (Rhodophyta Wettstein 1901) – red algae
- Red algae form one of the largest groups of algae. Most are seaweeds, being multicellular and marine. Their red colour comes from phycobiliproteins, used as accessory pigments in light capture for photosynthesis.
- Chloroplastida Adl et al., 2005 (Viridiplantae Cavalier-Smith 1981; Chlorobionta Jeffrey 1982, emend. Bremer 1985, emend. Lewis and McCourt 2004; Chlorobiota Kendrick and Crane 1997)
- Chloroplastida is the term chosen by Adl et al. for the group made up of the green algae and land plants (embryophytes). Except where lost secondarily, all have chloroplasts without a peptidoglycan layer and lack phycobiliproteins.
- Chlorophyta Pascher, 1914, emend. Lewis & McCourt, 2004 – green algae (part)
- Adl et al. employ a narrow definition of the Chlorophyta; other sources include the Chlorodendrales and Prasinophytae, which may themselves be combined.
- Ulvophyceae Mattox & Stewart, 1984
- Trebouxiophyceae Friedl, 1995 (Pleurastrophyceae Mattox et al. 1984; Microthamniales Melkonian 1990)
- Chlorophyceae Christensen, 1994
- Chlorodendrales Fritsch, 1917 – green algae (part)
- Prasinophytae Cavalier-Smith, 1998, emend. Lewis & McCourt, 2004 – green algae (part)
- Mesostigma Lauterborn, 1894, emend. McCourt in Adl et al., 2005 (Mesostigmata Turmel, Otis, and Lemieux 2002)
- Charophyta Karol et al., 2001, emend. Lewis & McCourt, 2004 (Charophyceae Smith 1938, emend. Mattox and Stewart 1984) – green algae (part) and land plants
- Charophyta sensu lato, as used by Adl et al., is a monophyletic group which is made up of some green algae, including the stoneworts (Charophyta sensu stricto), as well as the land plants (embryophytes).
- Sub-divisions other than Streptophytina (below) were not given by Adl et al.
- Other sources would include the green algal groups Coleochaetales.[30]
- Other sources would include the green algal groups
- StreptophytinaLewis & McCourt, 2004 – stoneworts and land plants
- Charales Lindley 1836 (Charophytae Engler, 1887) – stoneworts
- PlantaeHaeckel 1866 (Cormophyta Endlicher, 1836; Embryophyta Endlicher, 1836, emend. Lewis & McCourt, 2004) – land plants (embryophytes)
External phylogeny
Below is a consensus reconstruction of the relationships of Archaeplastida with its nearest neighbours, mainly based on molecular data.[31][32][33][34]
There has been disagreement near the Archaeplastida root, e.g. whether Cryptista emerged within the Archaeplastida. In 2014 a thorough review was published on these inconsistencies.[35] The position of Telonemia and Picozoa are not clear. Also Hacrobia (Haptista + Cryptista) may be completely associated with the SAR clade. The SAR are often seen as eukaryote-eukaryote hybrids, contributing to the confusion in the genetic analyses. A sister of Gloeomargarita lithophora has been engulfed by an ancestor of the Archaeplastida, leading to the plastids which are living in permanent endosymbiosis in most of the descendant lineages. Because both Gloeomargarita and related cyanobacteria, in addition to the most primitive archaeplastids, all live in freshwater, it seems the Archaeplastida originated in freshwater, and only colonized the oceans in the late Proterozoic.[36][37]
Internal phylogeny
In 2019, a phylogeny of the Archaeplastida based on genomes and transcriptomes from 1,153 plant species was proposed.
Archaeplastida |
|
"chlorophyte algae" "streptophyte algae" | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Morphology
All archaeplastidans have plastids (chloroplasts) that carry out photosynthesis and are believed to be derived from endosymbiotic cyanobacteria. In glaucophytes, perhaps the most primitive members of the group, the chloroplast is called a cyanelle and shares several features with cyanobacteria, including a peptidoglycan cell wall, that are not retained in other members of the group. The resemblance of cyanelles to cyanobacteria supports the
The cells of most archaeplastidans have walls, commonly but not always made of cellulose.[citation needed]
The Archaeplastida vary widely in the degree of their cell organization, from isolated cells to filaments to colonies to multi-celled organisms. The earliest were unicellular, and many groups remain so today. Multicellularity evolved separately in several groups, including red algae,
Endosymbiosis
Because the ancestral archaeplastidan is hypothesized to have acquired its chloroplasts directly by engulfing cyanobacteria, the event is known as a primary endosymbiosis (as reflected in the name chosen for the group 'Archaeplastida' i.e. 'ancient plastid'). In 2013 it was discovered that one species of green algae, Cymbomonas tetramitiformis in the order Pyramimonadales, is a mixotroph and able to support itself through both phagotrophy and phototrophy. It is not yet known if this is a primitive trait and therefore defines the last common ancestor of Archaeplastida, which could explain how it obtained its chloroplasts, or if it is a trait regained by horizontal gene transfer.[47] Since then more species of mixotrophic green algae, such as Pyramimonas tychotreta and Mantoniella antarctica, has been found.[48]
Evidence for primary endosymbiosis includes the presence of a double membrane around the chloroplasts; one membrane belonged to the bacterium, and the other to the eukaryote that captured it. Over time, many genes from the chloroplast have been transferred to the nucleus of the host cell through endosymbiotic gene transfer (EGT). It is estimated that 6–20% of the archaeplastidan genome consist of genes transferred from the endosymbiont.[49] The presence of such genes in the nuclei of eukaryotes without chloroplasts suggests this transfer happened early in the evolution of the group.[50]
Other eukaryotes with chloroplasts appear to have gained them by engulfing a single-celled archaeplastidan with its own bacterially-derived chloroplasts. Because these events involve endosymbiosis of cells that have their own endosymbionts, the process is called secondary endosymbiosis. The chloroplasts of such eukaryotes are typically surrounded by more than two membranes, reflecting a history of multiple engulfment. The chloroplasts of
Fossil record
Perhaps the most ancient remains of Archaeplastida are putative red algae (
In the late Neoproterozoic Era, algal fossils became more numerous and diverse. Eventually, in the Paleozoic Era, plants emerged onto land, and have continued to flourish up to the present.
Notes
- stramenopile alga Chrysoparadoxa are probably the result of secondary reduction.[9]
References
- ^ S2CID 8060916.
- ^ bioRxiv 10.1101/2021.08.29.458128.
- PMID 34789758.
- PMID 7337818.
- ^ PMID 21652302.
- PMID 21220783.
- ^ Picozoans Are Algae After All: Study | The Scientist Magazine®
- .
- S2CID 54477112.
- ^ Handbook of Marine Microalgae: Biotechnology Advances
- PMID 17194223.
- ^ PMID 18612431.
- .
- PMID 11429143.
- ^ Copeland, H. F. (1956). The Classification of Lower Organisms. Palo Alto: Pacific Books, p. 29, [1].
- ^ Bessey, C. E. (1907). "A Synopsis of Plant Phyla". Univ. Nebraska Studies. 7: 275–358.
- PMID 17726520.
- PMID 20333193.
- PMID 20031978.
- PMID 20333181.
- PMID 11062127.
- ^ Lipscomb, Diana. 1991. Broad classification: the kingdoms and the protozoa. In: Parasitic Protozoa, Vol. 1, 2nd ed., J.P. Kreier, J.R. Baker (eds.), pp. 81-136. Academic Press, San Diego.
- ^ PMID 19698794.
- PMID 31268560.)
{{cite journal}}
: CS1 maint: multiple names: authors list (link - ^ S2CID 7162977.
- PMID 7337818.
- PMID 14696040.
- ^ Simpson, A. G. B. (2004). "Highest-level taxa within Eukaryotes". First International Phylogenetic Nomenclature Meeting. Paris, July 6–9.
- PMID 20952597.
- PMID 16236178.
- S2CID 17603352. Archived from the original(PDF) on 2015-09-24. Retrieved 2017-10-15.
- ISBN 9783319281476.
- PMID 21652308.
- PMID 23020233.
- .
- PMID 28171752.
- PMID 28860199.
- PMID 31645766.
- PMID 31921561.
- PMID 31844283.
- PMID 29456145.
- PMID 32042158.
- PMID 32170292.
- S2CID 197542583.
- , retrieved 2024-06-08
- PMID 34789758.
- PMID 23787050.
- PMID 33649548.
- PMID 24065973.
- S2CID 18809784.
- PMID 20124341.
- S2CID 255012748.
- PMID 28291791.
- .
- S2CID 53600639.
- PMID 14963099.
- S2CID 36648568.