Armour-piercing ammunition

Source: Wikipedia, the free encyclopedia.
(Redirected from
Armor-piercing shot and shell
)
Armour-piercing ammunition
bursting charge
4. – Base-fuse (set with delay to explode inside the target)
5.Bourrelet (front) and driving band
(rear)

Armour-piercing ammunition (AP) is a type of

The first major application of armour-piercing projectiles was to defeat the thick armour carried on many warships and cause damage to their lightly armoured interiors. From the 1920s onwards, armour-piercing weapons were required for anti-tank warfare. AP rounds smaller than 20 mm are intended for lightly armoured targets such as body armour, bulletproof glass, and lightly armoured vehicles.

As tank armour improved during World War II, anti-vehicle rounds began to use a smaller but dense penetrating body within a larger shell, firing at very high muzzle velocity. Modern penetrators are long rods of dense material like tungsten or depleted uranium (DU) that further improve the terminal ballistics.

History

Steel plates penetrated in tests by naval artillery, 1867

The late 1850s saw the development of the

explosive shell
.

The first solution to this problem was effected by Major Sir W. Palliser, who, with the Palliser shot, invented a method of hardening the head of the pointed cast-iron shot.[2] By casting the projectile point downwards and forming the head in an iron mold, the hot metal was suddenly chilled and became intensely hard (resistant to deformation through a Martensite phase transformation), while the remainder of the mold, being formed of sand, allowed the metal to cool slowly and the body of the shot to be made tough[2] (resistant to shattering).

These chilled iron shots proved very effective against wrought iron armour but were not serviceable against compound and steel armour,[2] which was first introduced in the 1880s. A new departure, therefore, had to be made, and forged steel rounds with points hardened by water took the place of the Palliser shot. At first, these forged-steel rounds were made of ordinary carbon steel, but as armour improved in quality, the projectiles followed suit.[2]

During the 1890s and subsequently,

soft metal cap over the point of the shell – so called "Makarov tips" invented by Russian admiral Stepan Makarov
. This "cap" increased penetration by cushioning some of the impact shock and preventing the armour-piercing point from being damaged before it struck the armour face, or the body of the shell from shattering. It could also help penetration from an oblique angle by keeping the point from deflecting away from the armour face.

World War I

Shot and shell used before and during

lathe.[2] The projectiles were finished in a similar manner to others described above. The final, or tempering treatment, which gave the required hardness/toughness profile (differential hardening) to the projectile body, was a closely guarded secret.[2]

The rear cavity of these projectiles was capable of receiving a small bursting charge of about 2% of the weight of the complete projectile; when this is used, the projectile is called a shell, not a shot. The high-explosive filling of the shell, whether fuzed or unfuzed, had a tendency to explode on striking armour in excess of its ability to perforate.[2]

World War II

15-inch (381 mm)
capped armour-piercing shell with ballistic cap (APCBC), 1943

During World War II, projectiles used highly alloyed steels containing nickel-chromium-molybdenum, although in Germany, this had to be changed to a silicon-manganese-chromium-based alloy when those grades became scarce. The latter alloy, although able to be hardened to the same level, was more brittle and had a tendency to shatter on striking highly sloped armour. The shattered shot lowered penetration, or resulted in total penetration failure; for armour-piercing high-explosive (APHE) projectiles, this could result in premature detonation of the high-explosive filling. Advanced and precise methods of differentially hardening a projectile were developed during this period, especially by the German armament industry. The resulting projectiles change gradually from high hardness (low toughness) at the head to high toughness (low hardness) at the rear and were much less likely to fail on impact.

APHE shells for tank guns, although used by most forces of this period, were not used by the British. The only British APHE projectile for tank use in this period was the Shell AP, Mk1 for the

2 pdr anti-tank gun and this was dropped as it was found that the fuze tended to separate from the body during penetration. Even when the fuze did not separate and the system functioned correctly, damage to the interior was little different from the solid shot, and so did not warrant the additional time and cost of producing a shell version. They had been using APHE since the invention of the 1.5% high-explosive Palliser shell in the 1870s and 1880s, and understood the tradeoffs between reliability, damage, percentage of high explosive, and penetration, and deemed reliability and penetration to be most important for tank use. Naval APHE projectiles of this period, being much larger used a bursting charge of about 1–3% of the weight of the complete projectile,[2] but in anti-tank use, the much smaller and higher velocity shells used only about 0.5% e.g. Panzergranate 39 with only 0.2% high-explosive filling. This was due to much higher armour penetration requirements for the size of shell (e.g. over 2.5 times calibre in anti-tank use compared to below 1 times calibre for naval warfare). Therefore, in most APHE shells put to anti-tank use the aim of the bursting charge was to aid the number of fragments produced by the shell after armour penetration, the energy of the fragments coming from the speed of the shell after being fired from a high velocity anti-tank gun, as opposed to its bursting charge. There were some notable exceptions to this, with naval calibre shells put to use as anti-concrete and anti-armour shells, albeit with a much reduced armour penetrating ability. The filling was detonated by a rear-mounted delay fuze. The explosive used in APHE projectiles needs to be highly insensitive to shock to prevent premature detonation. The US forces normally used the explosive Explosive D
, otherwise known as ammonium picrate, for this purpose. Other combatant forces of the period used various explosives, suitably desensitized (usually by the use of waxes mixed with the explosive).

Projectile composition and construction

Cap and ballistic cap

Cap configurations
Name Schematic Description
AP – Armour-piercing No cap
APC – Armour-piercing capped
  
Armour-piercing cap
APBC – Armour-piercing ballistic capped
  
Ballistic cap
APCBC – Armour-piercing capped ballistic capped
  
Ballistic cap

Cap suffixes (C, BC, CBC) are traditionally only applied to AP, SAP, APHE and SAPHE-type projectiles (see below) configured with caps, for example "APHEBC" (armour-piercing high explosive ballistic capped), though sometimes the HE-suffix on capped APHE and SAPHE projectiles get omitted (example: APHECBC > APCBC). If fitted with a tracer, a "-T" suffix is added (APC-T).

Penetrator and filling

Projectile configurations (incomplete list)
Name Schematic Description
AP – Armour-piercing[a]
SAP – Semi-armour-piercing[b]
  Solid or hollowed steel body
APHE – Armour-piercing high-explosive[c]
SAPHE – Semi-armour-piercing high-explosive[d]
  Hollowed steel body
  Explosive charge
APCR – Armour-piercing composite rigid
  High-density hard material
  Deformable metal
APDS – Armour-piercing discarding sabot
  
Spin-stabilized penetrator
  Sabot
APFSDS – Armour-piercing fin-stabilized discarding sabot
  Fin-stabilized penetrator
  Sabot

Armour-piercing non-solid shells

An armour-piercing shell must withstand the shock of punching through

armour-piercing cap. This lowers the initial shock of impact to prevent the rigid shell from shattering, as well as aiding the contact between the target armour and the nose of the penetrator to prevent the shell from bouncing off in glancing shots. Ideally, these caps have a blunt profile, which led to the use of a further thin aerodynamic cap to improve long-range ballistics. Armour-piercing shells may contain a small explosive charge known as a "bursting charge". Some smaller-calibre
armour-piercing shells have an inert filling or an incendiary charge in place of the bursting charge.

APHE/SAPHE

Armour-piercing high-explosive (APHE) shells are armour-piercing shells containing an explosive filling, which were initially termed "shell", distinguishing them from non-explosive "shot". This was largely a matter of British usage, relating to the 1877 invention of the first of the type, the

anti-tank shells of 75 mm calibre and larger, due to the similarity with the much larger naval armour-piercing shells already in common use. As the war progressed, ordnance design evolved so that the bursting charges in APHE became ever smaller to non-existent, especially in smaller calibre shells, e.g. Panzergranate 39
with only 0.2% high-explosive filling.

The primary shell types for modern anti-tank warfare are discarding-sabot kinetic energy penetrators, such as APDS. Full-calibre armour-piercing shells are no longer the primary method of conducting anti-tank warfare. They are still in use in artillery above 50 mm calibre, but the tendency is to use semi-armour-piercing high-explosive (SAPHE) shells, which have less anti-armour capability but far greater anti-materiel and anti-personnel effects. These still have ballistic caps, hardened bodies and base fuzes, but tend to have far thinner body material and much higher explosive contents (4–15%).

Common terms (and acronyms) for modern armour-piercing and semi-armour-piercing shells are:

  • HEI-BF – High-explosive incendiary (base fuze)
  • SAPHE – Semi-armour-piercing high-explosive
  • SAPHEI – Semi-armour-piercing high-explosive incendiary
  • SAPHEI-T – Semi-armour-piercing high-explosive incendiary tracer

HEAT

Animation of a HEAT-shell functioning against armour.

High-explosive anti-tank (HEAT) shells are a type of shaped charge used to defeat armoured vehicles. They are very efficient at defeating plain steel armour but less so against later composite and reactive armour. The effectiveness of such shells is independent of velocity, and hence the range: it is as effective at 1000 metres as at 100 metres. This is because HEAT shells do not lose penetrating ability over distance. The speed can even be zero in the case where a soldier places a magnetic mine onto a tank's armour plate. A HEAT charge is most effective when detonated at a certain, optimal distance in front of a target and HEAT shells are usually distinguished by a long, thin nose probe protruding in front of the rest of the shell and detonating it at a correct distance, e.g., PIAT bomb. HEAT shells are less effective when spun, as when fired from a rifled gun.

HEAT shells were developed during World War II as a

Munroe effect to create a very high-velocity particle stream of metal in a state of superplasticity, and used to penetrate solid vehicle armour. HEAT rounds caused a revolution in anti-tank warfare when they were first introduced in the later part of World War II. One infantryman could effectively destroy any extant tank with a handheld weapon, thereby dramatically altering the nature of mobile operations. During World War II, weapons using HEAT warheads were known as having a hollow charge or shaped charge warhead.[3]

Claims for priority of invention are difficult to resolve due to subsequent historic interpretations, secrecy, espionage, and international commercial interest.

Stug III self-propelled gun (7.5 cm Gr.38 Hl/A, later editions B and C). In mid-1941, Germany started producing HEAT rifle grenades, first issued to paratroopers and by 1942 to regular army units. In 1943, the Püppchen, Panzerschreck and Panzerfaust
were introduced. The Panzerfaust and Panzerschreck or 'tank terror' gave the German infantryman the ability to destroy any tank on the battlefield from 50–150 m with relative ease of use and training, unlike the UK PIAT.

The first British HEAT weapon to be developed and issued was a

spigot mortar delivery system. While cumbersome, the weapon at last allowed British infantry to engage armour at range; the earlier magnetic hand-mines and grenades required them to approach suicidally close.[5] During World War II, the British referred to the Munroe effect as the cavity effect on explosives.[3]

Armour-piercing solid shots

Armour-piercing solid shot for cannons may be simple, or composite, solid projectiles but tend to also combine some form of incendiary capability with that of armour-penetration. The incendiary compound is normally contained between the cap and penetrating nose, within a hollow at the rear, or a combination of both. If the projectile also uses a tracer, the rear cavity is often used to house the tracer compound. For larger-calibre projectiles, the tracer may instead be contained within an extension of the rear sealing plug. Common abbreviations for solid (non-composite/hardcore) cannon-fired shot are; AP, AP-T, API and API-T; where "T" stands for "tracer" and "I" for "incendiary". More complex, composite projectiles containing explosives and other ballistic devices tend to be referred to as armour-piercing shells.

AP

Early WWII-era uncapped armour-piercing (AP) projectiles fired from high-velocity guns were able to penetrate about twice their calibre at close range (100 m). At longer ranges (500–1,000 m), this dropped 1.5–1.1 calibres due to the poor ballistic shape and higher drag of the smaller-diameter early projectiles. In January 1942 a process was developed by Arthur E. Schnell[6] for 20 mm and 37 mm armour piercing rounds to press bar steel under 500 tons of pressure that made more even "flow-lines" on the tapered nose of the projectile, which allowed the shell to follow a more direct nose first path to the armour target. Later in the conflict, APCBC fired at close range (100 m) from large-calibre, high-velocity guns (75–128 mm) were able to penetrate a much greater thickness of armour in relation to their calibre (2.5 times) and also a greater thickness (2–1.75 times) at longer ranges (1,500–2,000 m).

In an effort to gain better aerodynamics, AP rounds were given

ballistic caps
to reduce drag and improve impact velocities at medium to long range. The hollow ballistic cap would break away when the projectile hit the target. These rounds were classified as armour-piercing ballistic capped (APBC) rounds.

Armour-piercing, capped projectiles had been developed in the early 1900s, and were in service with both the British and German fleets during World War I. The shells generally consisted of a

mild steel cap to the nose of the shells. The more flexible mild steel would deform on impact and reduce the shock transmitted to the projectile body. Shell design varied, with some fitted with hollow caps and others with solid ones.[7]

Since the best-performance penetrating caps were not very aerodynamic, an additional

ballistic cap was later fitted to reduce drag. The resulting rounds were classified as armour-piercing capped ballistic capped (APCBC). The hollow ballistic cap gave the rounds a sharper point which reduced drag and broke away on impact.[8]

SAP