Astronomical naming conventions

Source: Wikipedia, the free encyclopedia.

In ancient times, only the Sun and Moon, a few stars, and the most easily visible planets had names. Over the last few hundred years, the number of identified astronomical objects has risen from hundreds to over a billion, and more are discovered every year. Astronomers need to be able to assign systematic designations to unambiguously identify all of these objects, and at the same time give names to the most interesting objects, and where relevant, features of those objects.

The International Astronomical Union (IAU) is the recognized authority in astronomy for assigning designations to celestial bodies such as stars, planets, and minor planets, including any surface features on them. In response to the need for unambiguous names for astronomical objects, it has created a number of systematic naming systems for objects of various sorts.

Stars

There are no more than a few thousand stars that appear sufficiently bright in Earth's sky to be visible to the

naked eye. This represents the number of stars available to be named by ancient cultures. The upper boundary to what is physiologically possible to be seen with the unaided eye is an apparent magnitude of 6, or about ten thousand stars. With the advent of the increased light-gathering abilities of the telescope, many more stars became visible, far too many to all be given names. The earliest naming system which is still popular is the Bayer designation using the name of constellations to identify the stars within them.[1]

The IAU is the only internationally recognized authority for assigning astronomical designations to

celestial objects and surface features on them.[2] The purpose of this is to ensure that names assigned are unambiguous. There have been many historical star catalogues
, and new star catalogues are set up on a regular basis as new sky surveys are performed. All designations of objects in recent star catalogues start with an "initialism", which is kept globally unique by the IAU. Different star catalogues then have different naming conventions for what goes after the initialism, but modern catalogs tend to follow a set of generic rules for the data formats used.

The IAU does not recognize the commercial practice of selling fictitious star names by commercial star-naming companies.[3]

Proper names

There are about 300 to 350 stars with traditional or historical proper names. They tend to be the

).

Stars may have multiple proper names, as many different cultures named them independently. Polaris, for example, has also been known by the names Alruccabah, Angel Stern, Cynosura, the Lodestar, Mismar, Navigatoria, Phoenice, the Pole Star, the Star of Arcady, Tramontana and Yilduz at various times and places by different cultures in human history.

In 2016, the

IAU organized a Working Group on Star Names (WGSN)[4] to catalog and standardize proper names for stars. The WGSN's first bulletin of July 2016[5] included a table of the first two batches of names approved by the WGSN (on 30 June and 20 July 2016) together with names of stars adopted by the IAU Executive Committee Working Group on Public Naming of Planets and Planetary Satellites during the 2015 NameExoWorlds campaign[6] and recognized by the WGSN. Further batches of names were approved on 21 August 2016, 12 September 2016 and 5 October 2016. These were listed in a table included in the WGSN's second bulletin issued in October 2016.[7] The next additions were done on 1 February, 30 June, 5 September and 19 November 2017, and on 6 June 2018. All are included on the current List of IAU-approved Star Names.[8]

The star nearest to Earth is typically referred to simply as "the Sun" or its equivalent in the language being used (for instance, if two astronomers were speaking French, they would call it le Soleil). However, it is usually called by its Latin name, Sol, in science fiction.

Named after people

There are about two dozen stars such as

King Charles I of England by Sir Charles Scarborough, his physician.[10][11][12] In 2019, IAU held the NameExoWorlds campaign.[13]

Catalogues

With the advent of the increased light-gathering abilities of the telescope, many more stars became visible, far too many to all be given names. Instead, they have

Book of Fixed Stars
in Arabic from 964. The variety of sky catalogues now in use means that most bright stars currently have multiple designations.

In 1540, the Italian astronomer Piccolomini released the book De le Stelle Fisse (On the Fixed Stars) which include star maps of 47 constellations where he numbered the stars in magnitude order using latin letters.[14]

Bayer designation

The

b Sagittarii (b Sgr), d Centauri (d Cen) and s Carinae
(s Car).

As the resolving power of telescopes increased, numerous objects that were thought to be a single object were found to be optical star systems that were too closely spaced in the sky to be discriminated by the human eye. This led to a third iteration, where numeric superscripts were added to distinguish those previously unresolved stars. Examples include Theta Sagittarii (θ Sgr) later distinguished as Theta¹ Sagittarii (θ¹ Sgr) and Theta² Sagittarii (θ² Sgr), each being their own (physical) star system with two and three stars, respectively.

Flamsteed designation

Rho¹ Cancri. In this case, the simpler Flamsteed designation, 55 Cancri
, is often preferred.

Modern catalogues

Most modern catalogues are generated by computers, using high-resolution, high-sensitivity telescopes, and as a result describe very large numbers of objects. For example, the

epoch 'J', right ascension 15h32m59.96s, declination
−00°39′44.1″).

Variable stars

Variable stars are assigned designations in a variable star scheme that is based on a variation of the

Latin genitive of the name of the constellation in which the star lies. Such designations mark them as variable stars. Examples include R Cygni, RR Lyrae, and V1331 Cygni. The International Astronomical Union delegates the task to the Sternberg Astronomical Institute
in Moscow, Russia.

Compact stars

Pulsars

Julian epoch) or a "B" (Besselian Epochs) used prior to 1993, as in PSR B1257+12
.

Black holes

Black holes have no consistent naming conventions.

Messier objects
.

Other black holes, such as Cygnus X-1 – a highly likely stellar black hole, are cataloged by their constellation and the order in which they were discovered. A large number of black holes are designated by their position in the sky and prefixed with the instrument or survey that discovered them.[15] Examples are SDSS J0100+2802 (where SDSS stands for Sloan Digital Sky Survey), and RX J1131−1231, observed by the Chandra X-ray Observatory.[16]

Supernovae

Astronomer's Telegram
provides some surrogate services independent from CBAT.

Four historical supernovae are known simply by the year they occurred:

SN 1604
(Kepler's Star).

Since 1885, the letter-suffixes are explicitly assigned, regardless whether only one supernova is detected during the entire year (although this has not occurred since 1947). Driven by advances in technology and increases in observation time in the early 21st century, hundreds of supernovae were reported every year to the IAU, with more than 500 catalogued in 2007.[17] Since then, the number of newly discovered supernovae has increased to thousands per year, for example almost 16,000 supernovae observations were reported in 2019, more than 2,000 of which were named by CBAT.[18]

Novae

Constellations

The sky was divided into constellations by historic astronomers, according to perceived patterns in the sky. At first, only the shapes of the patterns were defined, and the names and numbers of constellations varied from one star map to another. Despite being scientifically meaningless, they do provide useful reference points in the sky for human beings, including astronomers. In 1930, the boundaries of these constellations were fixed by Eugène Joseph Delporte and adopted by the IAU, so that now every point on the celestial sphere belongs to a particular constellation.[19]

Galaxies

Like stars, most

galaxies do not have names. There are a few exceptions such as the Andromeda Galaxy, the Whirlpool Galaxy
, and others, but most simply have a catalog number.

In the 19th century, the exact nature of galaxies was not yet understood, and the early catalogs simply grouped together

J. L. E. Dreyer
1888) was much larger and contained nearly 8,000 objects, still mixing galaxies with nebulas and star clusters.

Planets

The brightest planets in the sky have been named from ancient times. The scientific names are taken from the names given by the Romans: Mercury, Venus, Mars, Jupiter, and Saturn. Our own planet is usually named in English as Earth, or the equivalent in the language being spoken (for instance, two astronomers speaking French would call it la Terre). However, it is only recently in human history that it has been thought of as a planet. Earth, when viewed as a planet, is sometimes also called by its Latin scientific conventional name Terra, this name is especially prevalent in science fiction where the adjective "terran" is also used in the way which "Lunar" or "Jovian" is for Earth's moon or Jupiter. The Latin convention derives from the use of that language as an international scientific language by the first modern astronomers like Copernicus, Kepler, Galileo, Newton and others and was used for a long time. This is why the later discovered bodies were also named accordingly. Two more bodies that were discovered later, and considered planets when discovered, are still generally considered planets now:

These were given names from Greek or Roman myth, to match the ancient planet names—but only after some controversy. For example, Sir William Herschel discovered Uranus in 1781, and originally called it Georgium Sidus (George's Star) in honour of King

Johann Bode
proposed the name Uranus, after the Greek god. The name "Uranus" did not come into common usage until around 1850.

Starting in 1801,

Persephone
, and several other names, for a trans-Plutonian planet.

Derived from

Arabic
using the traditional Arabic name for the planet, المشتري Al-Mushtarīy.

Some sixty years after the discovery of Pluto, a large number of large trans-Neptunian objects began to be discovered. Under the criteria of classifying these Kuiper belt objects (KBOs), it became dubious whether Pluto would have been considered a planet had it been discovered in the 1990s. Its mass is now known to be much smaller than once thought and, with the discovery of Eris, it is simply one of the two largest known trans-Neptunian objects. In 2006, Pluto was therefore reclassified into a different class of astronomical bodies known as dwarf planets, along with Eris and others.

Exoplanets

Currently, according to the IAU, there is no agreed upon system for designating exoplanets (planets orbiting other stars). The process of naming them is organized by the IAU Executive Committee Working Group Public Naming of Planets and Planetary Satellites. The scientific nomenclature for the designations usually consists of a proper noun or abbreviation that often corresponds to the star's name, followed by a lowercase letter (starting with 'b'), like 51 Pegasi b.[20]

The lowercase lettering style is drawn from the IAU's long-established rules for naming binary and multiple star systems. A primary star, which is brighter and typically bigger than its companion stars, is designated by a capitalized A. Its companions are labelled B, C, and so on. For example,

Kepler-34(AB) b
.

Natural satellites

Earth's natural satellite is simply known as the Moon, or the equivalent in the language being spoken (for instance, two astronomers speaking French would call it la Lune). English-language science fiction often adopts the Latin name "Luna" while using the English "Moon" as a term for natural satellites in general in order to better distinguish the wider concept from any specific example. Natural satellites of other planets are generally named after mythological figures related to their parent body's namesake, such as Phobos and Deimos, the twin sons of Ares (Mars), or the Galilean moons of Io, Europa, Ganymede, and Callisto, four consorts of Zeus (Jupiter). Satellites of Uranus are instead named after characters from works by William Shakespeare or Alexander Pope, such as Umbriel or Titania.

When

S/2011 (134340) 1 rather than S/2011 P 1,[21] though the New Horizons
team, who disagreed with the dwarf planet classification, used the latter.

After a few months or years, when a newly discovered satellite's existence has been confirmed and its orbit computed, a permanent name is chosen, which replaces the "S/" provisional designation. However, in the past, some satellites remained unnamed for surprisingly long periods after their discovery. See Naming of moons for a history of how some of the major satellites got their current names.

The Roman numbering system arose with the very first discovery of natural satellites other than Earth's: Galileo referred to the Galilean moons as I through IV (counting from Jupiter outward), in part to spite his rival Simon Marius, who had proposed the names now adopted, after his own proposal to name the bodies after members of the Medici family failed to win currency. Similar numbering schemes naturally arose with the discovery of moons around Saturn and Mars. Although the numbers initially designated the moons in orbital sequence, new discoveries soon failed to conform with this scheme (e.g. "Jupiter V" is Amalthea, which orbits closer to Jupiter than does Io). The unstated convention then became, at the close of the 19th century, that the numbers more or less reflected the order of discovery, except for prior historical exceptions (see the Timeline of discovery of Solar System planets and their moons).

Geological and geographical features

In addition to naming planets and satellites themselves, the individual geological and geographical features such as craters, mountains, and volcanoes, on those planets and satellites also need to be named.

In the early days, only a very limited number of features could be seen on other Solar System bodies other than the Moon. Craters on the Moon could be observed with even some of the earliest telescopes, and 19th-century telescopes could make out some features on Mars. Jupiter had its famous Great Red Spot, also visible through early telescopes.

In 1919, the IAU was formed, and it appointed a committee to regularize the chaotic lunar and Martian nomenclatures then current. Much of the work was done by

Gerard P. Kuiper
. These works were adopted by the IAU and became the recognized sources for lunar nomenclature.

The Martian nomenclature was clarified in 1958, when a committee of the IAU recommended for adoption the names of 128

Eugene M. Antoniadi (1929), a Greek-born astronomer working at Meudon
, France.

However, the age of

space probes
brought high-resolution images of various Solar System bodies, and it became necessary to propose naming standards for the features seen on them.

Minor planets

Initially, the names given to minor planets followed the same pattern as the other planets: names from Greek or Roman myths, with a preference for female names. With the discovery in 1898 of the first body found to cross the orbit of Mars, a different choice was deemed appropriate, and 433 Eros was chosen. This started a pattern of female names for main-belt bodies and male names for those with unusual orbits.

As more and more discoveries were made over the years, this system was eventually recognized as being inadequate and a new one was devised. Currently, the responsibility for naming minor planets lies with the Working Group Small Bodies Nomenclature (WGSBN, originally the Committee Small Bodies Nomenclature, CSBN, and before that the Minor Planet Names Committee, MPNC), which is composed of 15 members, 11 of whom are voting members, while the other four are representatives for the

provisional designations (containing the year and the sequential order of discovery within that year) by the Minor Planet Center. When enough observations of the same object are obtained to calculate a reliable orbit, a sequential number is assigned by the Minor Planet Center to the minor-planet designation.[24]

After the designation is assigned, the discoverer is given an opportunity to propose a name, which, if accepted by the IAU, replaces the provisional designation. Thus for instance,

"lost" asteroids, it may take several decades before they are spotted again and finally assigned a designation. If a minor planet remains unnamed ten years after it has been given a designation, the right to name it is given also to identifiers of the various apparitions of the object, to discoverers at apparitions other than the official one, to those whose observations contributed extensively to the orbit determination, or to representatives of the observatory at which the official discovery was made. The WGSBN has the right to act on its own in naming a minor planet, which often happens when the number assigned to the body is an integral number of thousands.[22][24]

In recent years, automated search efforts such as

LONEOS
have discovered so many thousands of new asteroids that the WGSBN has officially limited naming to a maximum of two names per discoverer every two months. Thus, the overwhelming majority of asteroids currently discovered are not assigned formal names.

Under IAU rules, names must be pronounceable, preferably one word (such as

9007 James Bond), and since 1982, names are limited to a maximum of 16 characters, including spaces and hyphens. (This rule was violated once for the comet-asteroid 4015 Wilson–Harrington, whose name has 17 characters; this is because it had already been named as a comet before being rediscovered as an asteroid.)[27] Letters with diacritics are accepted, although in English the diacritical marks are usually omitted in everyday usage. 4090 Říšehvězd is an asteroid with the most diacritics (four). Military and political leaders are unsuitable unless they have been dead for at least 100 years. Names of pet animals are discouraged, but there are some from the past. Names of people, companies or products known only for success in business are not accepted, nor are citations that resemble advertising.[22][24]

Whimsical names can be used for relatively ordinary asteroids (such as 26858 Misterrogers or 274301 Wikipedia), but those belonging to certain dynamical groups are expected to follow more strictly defined naming schemes.[22][24]

Comets

The names given to

3D/Biela) and "Miss Herschel's Comet" (35P/Herschel–Rigollet
, or Comet Herschel–Rigollet). Most bright (non-periodic) comets were referred to as 'The Great Comet Of...' the year in which they appeared.

In the early 20th century, the convention of naming comets after their discoverers became common, and this remains today. A comet is named after its first independent discoverers, up to a maximum of three names, separated by hyphens.

Genichi Araki and George Alcock). Comet 105P/Singer Brewster, discovered by Stephen Singer-Brewster, should by rights have been named "105P/Singer-Brewster", but this could be misinterpreted as a joint discovery by two astronomers named Singer and Brewster, respectively, so the hyphen was replaced by a space.[32] The spaces, apostrophes and other characters in discoverer names are preserved in comet names, like 32P/Comas Solà, 6P/d'Arrest, 53P/Van Biesbroeck, Comet van den Bergh (1974g), 66P/du Toit,[32] or 57P/du Toit–Neujmin–Delporte
.

Until 1994, the systematic naming of comets (the "Old Style") involved first giving them a provisional designation of the year of their discovery followed by a lower case letter indicating its order of discovery in that year (e.g. the first

1970 II
.

Increasing numbers of comet discoveries made this procedure difficult to operate, and in 2003 the IAU's Committee on Small Body Nomenclature approved a new naming system,

David Levy
(the Shoemaker–Levy team has also discovered four non-periodic comets interspersed with the periodic ones), but its systematic name is D/1993 F2 (it was discovered in 1993 and the prefix "D/" is applied, because it was observed to crash into Jupiter).

Some comets were first spotted as minor planets, and received a temporary designation accordingly before cometary activity was later discovered. This is the reason for such comets as P/1999 XN120 (Catalina 2) or P/2004 DO29 (SpacewatchLINEAR). The MPECs and HTML version of IAUCs, because of their telegraphic style, "flatten out" the subscripts, but the PDF version of IAUCs[35] and some other sources such as the Yamamoto Circulars and the Kometnyj Tsirkular use them.

See also

Footnotes

  1. ^ The assignment of "H" for Mercury is specified by the "USGS Gazetteer of Planetary Nomenclature".; since the USGS usually closely follows IAU guidelines, this is very likely the IAU convention, but confirmation is needed.

References

  1. ^ "Naming Stars IAU". International Astronomical Union.
  2. ^ "About the IAU". International Astronomical Union.
  3. ^ "Buying Stars and Star Names". International Astronomical Union.
  4. ^ "IAU Working Group on Star Names (WGSN)". International Astronomical Union.
  5. ^ "Bulletin of the IAU Working Group on Star Names, No. 1" (PDF). Retrieved 28 July 2016.
  6. ^ "Final Results of NameExoWorlds Public Vote Released" (Press release). IAU.org. 15 December 2015. Archived from the original on 2022-11-10.
  7. ^ "Bulletin of the IAU Working Group on Star Names, No. 2" (PDF). Retrieved 12 October 2016.
  8. ^ "Naming Stars". International Astronomical Union.
  9. ^ "NameExoWorlds The Approved Names". Archived from the original on 2018-02-01. Retrieved 2016-07-28.
  10. ^ Richard Hinckley Allen, Star-Names and Their Meanings, G.E. Stechert, New York, 1899
  11. ^ Robert Burnham, Jr. Burnham's Celestial Handbook, Volume 1, p. 359.
  12. ^ Ian Ridpath: "Star Tales", Canes Venatici. See also Deborah J. Warner, The Sky Explored: Celestial Cartography 1500-1800.
  13. ^ "Approved names". NameExoworlds. Retrieved 2020-01-02.
  14. ^ Ridpath, Ian. "Alessandro Piccolomini's star atlas".
  15. ^ "Black Hole Encyclopedia – FAQ". StarDate.org. Archived from the original on 2021-08-06. Retrieved 4 September 2015.
  16. ^ "Chandra images by category: Black holes". Harvard-Smithsonian Center for Astrophysics. 10 August 2015. Archived from the original on 2022-12-05.
  17. ^ a b "List of Supernovae". Cbat.eps.harvard.edu. Retrieved 4 September 2015.
  18. ^ Bishop, David. "Supernova discovery statistics for 2019". Rochester Academy of Science, Astronomy Section. Archived from the original on 2020-11-20. Retrieved 14 March 2021.
  19. ^ "The Constellations". International Astronomical Union.
  20. ^ "Naming of exoplanets". International Astronomical Union. Retrieved 2014-12-01.
  21. ^ "New Satellite of (134340) Pluto: S/2011 (134340) 1". Archived from the original on 2012-05-26. Retrieved 2011-07-20.
  22. ^ a b c d e f "Minor Planet Naming Guidelines (Rules and Guidelines for naming non-cometary small Solar-System bodies) – v1.0" (PDF). Working Group Small Body Nomenclature (PDF). 20 December 2021.
  23. ^ a b "IAU: WG Small Body Nomenclature (WGSBN)". Working Group Small Body Nomenclature. Retrieved 9 February 2022.
  24. ^ a b c d e "Naming Astronomical Objects: Minor Planets". International Astronomical Union. Retrieved 2014-11-21.
  25. ^ "Division F WG Small Bodies Nomenclature (SBN) | Commissions | IAU". www.iau.org. Retrieved 2019-10-15.
  26. ^ "How Are Minor Planets Named?". Minor Planet Center. Retrieved 2014-11-21.
  27. ^ "MPEC 2020-T164 : (3548) Eurybates I = Queta". Minor Planet Electronic Circular. Minor Planet Center. 15 October 2020. Retrieved 16 May 2021.
  28. ^ Ticha, J.; et al. (10 April 2018). "DIVISION F / Working Group for Small Body Nomenclature Working Group for Small Body Nomenclature. THE TRIENNIAL REPORT (2015 Sept 1 - 2018 Feb 15)" (PDF). International Astronomical Union. Retrieved 16 May 2021.
  29. ^ a b c IAU Comet-naming Guidelines Archived March 4, 2016, at the Wayback Machine, Committee on Small Body Nomenclature of Division III of the IAU
  30. . Retrieved 19 December 2012. What if two or more different people discover the same comet at about the same time? This problem is solved by allowing a comet to bear as many as three names. The names are separated by hyphens. Thus we have had comets such as Ikeya-Seki and Arend-Roland. It has been decided that more than three names would be ridiculous and cumbersome. Therefore, we do not hear of comets such as Jones-Smith-James-Olson-Walters-Peterson-Garcia-Welch!
  31. ^
    Bibcode:1989JALPO..33...25M, A hyphen (-) is used in a comet's name only to separate the discoverers. Thus, when sometimes the discover has a double name, the hyphen is dropped from the comet's name in order to show that there was only one discoverer. For example, in 1986 Stephen Singer-Brewster discovered a comet. It is known as "Comet Singer Brewster." Go to the journal search in the Astrophysics Data System
    , pick "Journal of the Association of Lunar and Planetary Observers", volume "33", page "26". It's not in the list of abstracts, you have to check the page thumbnails.
  32. ^ Cometary Designation System, IAU, First appearing in Minor Planet Circulars 23803-4, then in International Comet Quarterly, 16, 127
  33. ^ "MPEC 2018-H54 : 2. A/ Objects". Minor Planet Center. 20 April 2018. Retrieved 12 August 2018.
  34. ^ Compare the HTML and PDF versions of IAUC 8797: in the PDF version the designation P/1999 DN3 is written with a subscript.

External links