Atmospheric escape

Source: Wikipedia, the free encyclopedia.

Atmospheric escape is the loss of

habitability
and likelihood of life.

Thermal escape mechanisms

Thermal escape occurs if the molecular velocity due to thermal energy is sufficiently high. Thermal escape happens at all scales, from the molecular level (Jeans escape) to bulk atmospheric outflow (hydrodynamic escape).

A visualization of Jeans escape. Temperature defines a range of molecular energy. Above the exobase, molecules with enough energy escape, while in the lower atmosphere, molecules are trapped by collisions with other molecules.

Jeans escape

One classical thermal escape mechanism is Jeans escape,

Maxwell distribution
. The kinetic energy (), mass (), and velocity () of a molecule are related by . Individual molecules in the
limited by diffusion through the thermosphere
.

Three factors strongly contribute to the relative importance of Jeans escape: mass of the molecule, escape velocity of the planet, and heating of the upper atmosphere by radiation from the parent star. Heavier molecules are less likely to escape because they move slower than lighter molecules at the same temperature. This is why

Earth's atmosphere
. Finally, the distance a planet orbits from a star also plays a part; a close planet has a hotter atmosphere, with higher velocities and hence, a greater likelihood of escape. A distant body has a cooler atmosphere, with lower velocities, and less chance of escape.

A visualization of hydrodynamic escape. At some level in the atmosphere, the bulk gas will be heated and begin to expand. As the gas expands, it accelerates and escapes the atmosphere. In this process, lighter, faster molecules drag heavier, slower molecules out of the atmosphere.

Hydrodynamic escape