BCL11A

Source: Wikipedia, the free encyclopedia.
BCL11A
Identifiers
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001159289
NM_001159290
NM_001242934
NM_016707

RefSeq (protein)

NP_060484
NP_075044
NP_612569
NP_001350793
NP_001352538

NP_001152761
NP_001152762
NP_001229863
NP_057916

Location (UCSC)Chr 2: 60.45 – 60.55 MbChr 11: 24.08 – 24.17 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

B-cell lymphoma/leukemia 11A is a protein that in humans is encoded by the BCL11A gene.[5][6][7]

Function

The BCL11A gene encodes for a regulatory C2H2 type zinc-finger protein, that can bind to the DNA. Five alternatively spliced transcript variants of this gene, which encode distinct isoforms, have been reported.[7] The protein associates with the SWI/SNF complex, that regulates gene expression via chromatin remodeling.[8]

BCL11A is highly expressed in several hematopoietic lineages, and plays a role in the switch from γ- to β-globin expression during the fetal to adult erythropoiesis transition.[9]

Furthermore, BCL11A is expressed in the brain, where it forms a protein complex with CASK to regulate axon outgrowth and branching.[10] In the neocortex, BCL11A binds to the TBR1 regulatory region and inhibits the expression of TBR1.[11]

Clinical significance

The corresponding Bcl11a mouse gene is a common site of

retroviral integration in myeloid leukemia, and may function as a leukemia disease gene, in part, through its interaction with BCL6. During hematopoietic cell differentiation, this gene is down-regulated. It is possibly involved in lymphoma pathogenesis since translocations associated with B-cell malignancies also deregulates its expression. In addition, BCL11A has been found to play a role in the suppression of fetal hemoglobin production. Therapeutic strategies aimed at increasing fetal hemoglobin production in diseases such as beta thalassemia and sickle cell anemia by inhibiting BCL11A are currently being explored.[12][13]

Furthermore, heterozygous de novo mutations in BCL11A have been identified in an intellectual disability disorder, accompanied with global developmental delay and autism spectrum disorder.[14] These mutations disrupt BCL11A homodimerization and transcriptional regulation.

BCL11A has also been identified as an important gene of interest in type-2 diabetes. Methylation of BCl11A has been hypothesized to contribute to type-2 diabetes risk, while BCL11a loss in a human islet model was demonstrated to result in an increase in insulin secretion.[15][16]

Interactions

BCL11A has been shown to interact with a number of proteins. BCL11A was initially discovered as a

NONO.[14] In neurons, BCL11A interacts with CASK to regulate target genes.[10] Furthermore, BCL11A interacts with the neuron-specific protein TBR1, which is also implicated in intellectual disability and autism spectrum disorder.[18]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000119866Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000000861Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 11719382
    .
  6. .
  7. ^ a b "Entrez Gene: BCL11A B-cell CLL/lymphoma 11A (zinc finger protein)".
  8. PMID 23644491
    .
  9. .
  10. ^ .
  11. .
  12. .
  13. ^ "Sickle cell: 'The revolutionary gene-editing treatment that gave me new life'". BBC News. 2022-02-20. Retrieved 2023-03-27.
  14. ^
    PMID 27453576
    .
  15. .
  16. .
  17. .
  18. .

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This page is based on the copyrighted Wikipedia article: BCL11A. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy