Pathogenic bacteria

Source: Wikipedia, the free encyclopedia.
(Redirected from
Bacterial infections
)
Pathogenic bacteria
Neisseria gonorrhoeae (small red dots) in pus from a man with a urethral discharge (Gram stain)

Pathogenic bacteria are

digestive tract.[citation needed
]

The body is continually exposed to many species of bacteria, including beneficial

microorganisms
.

Pathogenic bacteria are specially adapted and endowed with mechanisms for overcoming the normal body defences, and can invade parts of the body, such as the blood, where bacteria are not normally found. Some pathogens invade only the surface

blood streams. In some rare cases a pathogenic microbe can infect an entirely healthy person, but infection usually occurs only if the body's defence mechanisms are damaged by some local trauma or an underlying debilitating disease, such as wounding, intoxication, chilling, fatigue, and malnutrition. In many cases, it is important to differentiate infection and colonization
, which is when the bacteria are causing little or no harm.

Global number of deaths (A) and YLLs (B), by pathogen and GBD super-region, 2019[3]

Caused by Mycobacterium tuberculosis bacteria, one of the diseases with the highest disease burden is tuberculosis, which killed 1.4 million people in 2019, mostly in sub-Saharan Africa.[4] Pathogenic bacteria contribute to other globally important diseases, such as pneumonia, which can be caused by bacteria such as Staphylococcus, Streptococcus and Pseudomonas, and foodborne illnesses, which can be caused by bacteria such as Shigella, Campylobacter, and Salmonella. Pathogenic bacteria also cause infections such as tetanus, typhoid fever, diphtheria, syphilis, and leprosy.

Pathogenic bacteria are also the cause of high

developing countries.[5] A GBD study estimated the global death rates from (33) bacterial pathogens, finding such infections contributed to one in 8 deaths (or ~7.7 million deaths), which could make it the second largest cause of death globally in 2019.[6][3]

Most pathogenic bacteria can be grown in cultures and identified by Gram stain and other methods. Bacteria grown in this way are often tested to find which antibiotics will be an effective treatment for the infection. For hitherto unknown pathogens, Koch's postulates are the standard to establish a causative relationship between a microbe and a disease.

Diseases

COPD

Each species has specific effect and causes symptoms in people who are infected. Some people who are infected with a pathogenic bacteria do not have symptoms. Immunocompromised individuals are more susceptible to pathogenic bacteria.[7]

Pathogenic susceptibility

Some pathogenic bacteria cause disease under certain conditions, such as entry through the skin via a cut, through sexual activity or through compromised immune function.[citation needed]

An abscess caused by opportunistic S. aureus bacteria.

Some species of

skin microbiota and typically reside on healthy skin or in the nasopharyngeal region. Yet these species can potentially initiate skin infections. Streptococcal infections include sepsis, pneumonia, and meningitis.[8] These infections can become serious creating a systemic inflammatory response resulting in massive vasodilation, shock, and death.[9]

Other bacteria are opportunistic pathogens and cause disease mainly in people with immunosuppression or cystic fibrosis. Examples of these opportunistic pathogens include Pseudomonas aeruginosa, Burkholderia cenocepacia, and Mycobacterium avium.[10][11]

Intracellular

Obligate intracellular parasites (e.g. Chlamydophila, Ehrlichia, Rickettsia) are only able to grow and replicate inside other cells. Infections due to obligate intracellular bacteria may be asymptomatic, requiring an incubation period. Examples of obligate intracellular bacteria include Rickettsia prowazekii (typhus) and Rickettsia rickettsii, (Rocky Mountain spotted fever).[citation needed
]

Other groups of intracellular bacterial pathogens include Salmonella, Neisseria, Brucella, Mycobacterium, Nocardia, Listeria, Francisella, Legionella, and Yersinia pestis. These can exist intracellularly, but can exist outside host cells.[citation needed]

Infections in specific tissue

Bacterial pathogens often cause infection in specific areas of the body. Others are generalists.

Mechanisms of damage

The symptoms of disease appear as pathogenic bacteria damage host tissues or interfere with their function. The bacteria can damage host cells directly or indirectly by provoking an immune response that inadvertently damages host cells,[21] or by releasing toxins.[22]

Direct

Once pathogens attach to host cells, they can cause direct damage as the pathogens use the host cell for nutrients and produce waste products.

dental caries.[24]

Toxin production

Protein structure of botulinum toxin.

Exotoxins are secreted into the surrounding medium or released when the bacteria die and the cell wall breaks apart.[25]

Indirect

An excessive or inappropriate immune response triggered by an infection may damage host cells.[1]

Survival in host

Nutrients

Iron is required for humans, as well as the growth of most bacteria. To obtain free iron, some pathogens secrete proteins called

siderophores, which take the iron away from iron-transport proteins by binding to the iron even more tightly. Once the iron-siderophore complex is formed, it is taken up by siderophore receptors on the bacterial surface and then that iron is brought into the bacterium.[25]

Bacterial pathogens also require access to carbon and energy sources for growth. To avoid competition with host cells for glucose which is the main energy source used by human cells, many pathogens including the respiratory pathogen Haemophilus influenzae specialise in using other carbon sources such as lactate that are abundant in the human body [26]

Identification

Example of a workup algorithm of possible bacterial infection in cases with no specifically requested targets (non-bacteria, mycobacteria etc.), with most common situations and agents seen in a New England setting.

Typically identification is done by growing the organism in a wide range of cultures which can take up to 48 hours. The growth is then visually or genomically identified. The cultured organism is then subjected to various assays to observe reactions to help further identify species and strain.[27]

Treatment

Bacterial infections may be treated with

antibiotic resistance in bacterial populations.[29] Phage therapy, using bacteriophages can also be used to treat certain bacterial infections.[30]

Prevention

Infections can be prevented by

Disinfectants such as bleach are used to kill bacteria or other pathogens on surfaces to prevent contamination and further reduce the risk of infection. Bacteria in food are killed by cooking to temperatures above 73 °C (163 °F).[citation needed
]

List of genera and microscopy features

Many

genera contain pathogenic bacterial species
. They often possess characteristics that help to classify and organize them into groups. The following is a partial listing.

Genus Species
Gram staining
Shape Oxygen requirement Intra/Extracellular
Bacillus[31] Positive Rods Facultative anaerobic Extracellular
Bartonella[31] Negative Rods Aerobic Facultative intracellular
Bordetella[31] Negative Small
coccobacilli
Aerobic Extracellular
Borrelia[31] Negative, stains poorly
Spirochete
Anaerobic Extracellular
Brucella[31] Negative
Coccobacilli
Aerobic Intracellular
Campylobacter[31] Negative Spiral rods[34]
coccoid in older cultures[34]
Microaerophilic[34]
Extracellular
Chlamydia and Chlamydophila[31]
(not Gram-stained) Small, round, ovoid Facultative or strictly aerobic Obligate intracellular
Clostridium[31] Positive Large, blunt-ended rods Obligate anaerobic Extracellular
Corynebacterium[31] Positive (unevenly) Rods Mostly facultative anaerobic Extracellular
Enterococcus[33][37] Positive Cocci Facultative Anaerobic Extracellular
Escherichia[5][33][38] Negative Rods Facultative anaerobic Extracellular or Intracellular
Francisella[31] Negative Coccobacillus Strictly aerobic Facultative intracellular
Haemophilus Negative Coccobacilli to long and slender filaments Facultative anaerobic 5 - 10% CO2 Extracellular
Helicobacter Negative Spiral rod Microaerophile Extracellular
Legionella[31] Negative, stains poorly Cocobacilli Aerobic Facultative intracellular
Leptospira[33][41] Negative, stains poorly
Spirochete
Strictly aerobic Extracellular
Listeria[31] Positive, darkly Slender, short rods Facultative Anaerobic Facultative intracellular
Mycobacterium[31] (none) Long, slender rods Aerobic Intracellular
Mycoplasma[31] (none) Indistinct 'fried egg' appearance, no cell wall Mostly facultative anaerobic; M. pneumoniae strictly aerobic Extracellular
Neisseria[33][42] Negative Kidney bean-shaped Aerobic Gonococcus: facultative intracellular
N. meningitidis
: extracellular
Pseudomonas[33][43] Negative Rods Obligate aerobic Extracellular
Rickettsia[31] Negative, stains poorly Small, rod-like coccobacillary Aerobic Obligate intracellular
Salmonella[31]
  • Salmonella typhi
  • Salmonella typhimurium
Negative Rods Facultative anaerobica Facultative intracellular
Shigella[33][44] Negative Rods Facultative anaerobic Extracellular
Staphylococcus[5] Positive, darkly Round cocci Facultative anaerobic Extracellular, facultative intracellular
Streptococcus[31] Positive Ovoid to spherical Facultative anaerobic Extracellular
Treponema[31] Negative, stains poorly Spirochete Aerobic Extracellular
Ureaplasma[5] Stains poorly[45] Indistinct, 'fried egg' appearance, no cell wall Anaerobic Extracellular
Vibrio[33][46] Negative Spiral with single polar flagellum Facultative anaerobic Extracellular
Yersinia[33][47] Negative, bipolarly Small rods Facultative anaerobe Intracellular

List of species and clinical characteristics

  • Overall age-standardised mortality rate per 100 000 population for 33 pathogens investigated, 2019[3]
    Overall age-standardised mortality rate per 100 000 population for 33 pathogens investigated, 2019[3]
  • Global number of deaths (A) and YLLs (B), by pathogen and infectious syndrome, 2019[3]
    Global number of deaths (A) and YLLs (B), by pathogen and infectious syndrome, 2019[3]
  • Global number of deaths, by pathogen, age, and sex groups, 2019[3]
    Global number of deaths, by pathogen, age, and sex groups, 2019[3]

This is description of the more common genera and species presented with their clinical characteristics and treatments.

Species of human pathogenic bacteria
Species
Transmission
Diseases Treatment Prevention
Actinomyces israelii
Oral flora[48]
Prolonged
penicillin G and drainage[48]
Bacillus anthracis

Contact with cattle, sheep, goats and horses[51]
Spores enter through inhalation or through abrasions[33]

Anthrax: pulmonary, gastrointestinal and/or cutaneous symptoms.[48]

In early infection:[52]

Penicillin
Doxycycline
Ciprofloxacin
Raxibacumab[53]

Anthrax vaccine[33]

Autoclaving of equipment[33]

Bacteroides fragilis
Gut flora[48]
Abscesses in gastrointestinal tract, pelvic cavity and lungs[48] metronidazole[48] Wound care[54]

Aspiration prevention[54]

Bordetella pertussis

Contact with respiratory droplets expelled by infected human hosts.[33]

Whooping cough[33][48]
Secondary bacterial pneumonia[33]

Macrolides[33] such as erythromycin,[33][48] before paroxysmal stage[48]

Pertussis vaccine,[33][48] such as in DPT vaccine[33][48]

Borrelia B. burgdorferi[33][48]

B. garinii[33]
B. afzelii[33]

Ixodes hard ticks
Reservoir in mice, other small mammals, and birds[55]

Lyme disease[56][57]

Doxycycline for adults, amoxicillin for children, ceftriaxone for neurological involvement[56]

Wearing clothing that limits skin exposure to ticks.[33]
Insect repellent.[33]
Avoid areas where ticks are found.[33]

B. recurrentis[58]

and others[note 1]

Pediculus humanus corporis body louse (B. recurrentis only) and Ornithodoros soft ticks[58]
Relapsing fever Penicillin, tetracycline, doxycycline[59] Avoid areas where ticks are found[58]

Better access to washing facilities[58]
Reduce crowding[58]
Pesticides[58]

Brucella B. abortus

B. canis
B. melitensis
B. suis

Direct contact with infected animal[33]
Oral, by ingestion of unpasteurized milk or milk products[33]

night sweats

doxycycline[33]
streptomycin
or gentamicin[33]

Campylobacter jejuni

Fecal–oral from animals (mammals and fowl)[33][48]
Uncooked meat (especially poultry)[33][48]
Contaminated water[33]

Treat symptoms[33]

Fluoroquinolone[48] such as ciprofloxacin[33] in severe cases[33]

Good hygiene[33]
Avoiding contaminated water[33]

Pasteurizing milk and milk products[33]

Cooking meat (especially poultry)
[33]

Chlamydia C. pneumoniae

Respiratory droplets[33][48]

Atypical pneumonia[48]

Doxycycline[33][48]
Erythromycin[33][48]

None[33]
C. trachomatis

vaginal sex[33]

oral sex[33]
anal sex[33] Vertical from mother to newborn(
ICN)[33]

Direct or contaminated surfaces and flies (trachoma)
[33]

Trachoma[33][48]
Neonatal conjunctivitis[33][48]
Neonatal pneumonia[33][48]

Nongonococcal urethritis (NGU)[33][48]

Urethritis[33][48]
Pelvic inflammatory disease[33][48]
Epididymitis[33][48]
Prostatitis[33][48]
Lymphogranuloma venereum (LGV)[33][48]

Erythromycin[33][48]
(adults)[48] Doxycycline[33][48]
(infants and pregnant women)[48]

Erythromycin or

newborn's eyes[33]

Safe sex[33]
Abstinence[33]

Chlamydophila psittaci
Inhalation of dust with secretions or feces from birds (e.g. parrots) Psittacosis, mainly atypical pneumonia

Tetracycline[33]
Doxycycline[33]
Erythromycin[33]

-
Clostridium C. botulinum Spores from soil,[33][48] persevere in canned food, smoked fish and honey[48]

Botulism: Mainly muscle weakness and paralysis[48]

Antitoxin[33][48]
Penicillin[48]
Hyperbaric oxygen[48]
Mechanical ventilation[48]

Proper food preservation techniques

C. difficile

Gut flora,[33][48] overgrowing when other flora is depleted[33]

Pseudomembranous colitis[33][48]

Discontinuing responsible antibiotic[33][48]
Vancomycin or metronidazole if severe[33][48]

Fecal bacteriotherapy
C. perfringens

Spores in soil[33][48]

gut flora[33]

Anaerobic cellulitis[33][48]

Gas gangrene[33][48] Acute
food poisoning[33][48]

Gas gangrene:

Debridement or amputation[33][48]
Hyperbaric medicine[33][48]
High doses of

penicillin G[33][48] and clindamycin[48]

Food poisoning: Supportive care is sufficient
[33]

Appropriate food handling[33]
C. tetani

Spores in soil, skin penetration through wounds[33][48]

muscle spasms[60]

Tetanus immune globulin[33][48]
Sedatives[33]
Muscle relaxants[33]
Mechanical ventilation[33][48]
Penicillin or metronidazole[48]

Tetanus vaccine (such as in the DPT vaccine)[33]

Corynebacterium diphtheriae

respiratory droplets
part of human flora

Diphtheria: Fever, sore throat and neck swelling, potentially narrowing airways.[61]

Horse serum antitoxin
Erythromycin
Penicillin

DPT vaccine

Ehrlichia E. canis[48]

E. chaffeensis[48]

Dog tick[48]
fatigue
Enterococcus E. faecalis

E. faecium

Part of

gut flora,[48] opportunistic or entering through GI tract or urinary system wounds[33]

Bacterial endocarditis,[48] biliary tract infections,[48] urinary tract infections[48]

Ampicillin (combined with aminoglycoside in endocarditis)[48] Vancomycin[33]

No vaccine Hand washing and other

nosocomial prevention

Escherichia E. coli (generally) UTI:[33]

(resistance-tests are required first)

Meningitis:[33]

Diarrhea:[33]

  • Antibiotics above shorten duration
  • Electrolyte and fluid replacement
(no vaccine or preventive drug)[33]
Enterotoxigenic E. coli (ETEC)
Enteropathogenic E. coli
  • Vertical, in utero or at birth[33]
  • Diarrhea in infants[33]
Enteroinvasive E.coli (EIEC)
Enterohemorrhagic (EHEC), including E. coli O157:H7
  • Reservoir in cattle[33]
Francisella tularensis Tularemia: Fever, ulceration at entry site and/or lymphadenopathy.[63] Can cause severe pneumonia.[63]
  • Avoiding insect vectors[33]
  • Precautions when handling wild animals or animal products[33]
Haemophilus influenzae
  • Droplet contact[33]
  • Human flora of e.g. upper respiratory tract[33]
Meningitis:[33]

(resistance-tests are required first)

Helicobacter pylori
  • Colonizing stomach[33]
  • Unclear person-to-person transmission[33]
  • bismuth salt combination[33]
(No vaccine or preventive drug)[33]
Klebsiella pneumoniae
Legionella pneumophila
  • Droplet contact, from e.g.
    humidifiers,[33] air conditioners[33][48] and water distribution systems[33]
(no vaccine or preventive drug)[33]

Heating water[33]

Leptospira species
  • Food and water contaminated by urine from infected wild or domestic animals. Leptospira survives for weeks in fresh water and moist soil.[33]
Vaccine not widely used[33]

Prevention of exposure[33]

Listeria monocytogenes
(no vaccine)[33]
  • Proper food preparation and handling[33]
Mycobacterium
M. leprae
  • Prolonged human-human contact, e.g. through exudates from skin lesions to abrasion of other person[33]
Tuberculoid form:

Lepromatous form:

  • BCG vaccine shows some effects[33]
M. tuberculosis

(difficult, see

Tuberculosis treatment for more details)[33]

Standard "short" course:[33]

Mycoplasma pneumoniae
Neisseria
N. gonorrhoeae
Uncomplicated gonorrhea:[33]

Ophthalmia neonatorum:

(No vaccine)[33]
N. meningitidis
  • Droplet transmission[33]
Pseudomonas aeruginosa Opportunistic;[48] Infects damaged tissues or people with immunodeficiency.[33] Pseudomonas infection:[33] (no vaccine)[33]
Nocardia asteroides In soil[48] Nocardiosis:[48] Pneumonia, endocarditis, keratitis, neurological or lymphocutaneous infection
TMP/SMX[48]
Rickettsia rickettsii (no preventive drug or approved vaccine)[33]
Salmonella
S typhi
Other Salmonella species


e.g.

S. typhimurium[33]

  • Fecal–oral[33]
  • Food contaminated by fowl[33] (e.g. uncooked eggs)[48] or turtles[48]
(No vaccine or preventive drug)[33]
  • Proper sewage disposal[33]
  • Food preparation[33]
  • Good personal hygiene[33]
Shigella S. sonnei[33]


S. dysenteriae[48]

  • Protection of water and food supplies[33]
  • Vaccines are in trial stage[71]
Staphylococcus aureus Coagulase-positive staphylococcal infections: (no vaccine or preventive drug)
  • Barrier precautions, washing hands and fomite disinfection in hospitals
epidermidis Human flora in skin,
mucous membranes[48]
None[33]
saprophyticus Part of normal vaginal flora[33] None[33]
Streptococcus agalactiae Human flora in vagina,[33][48] urethral mucous membranes,[33] rectum[33] None[33]
pneumoniae
  • Respiratory droplets
  • Human flora in nasopharynx[48] (spreading in immunocompromised)[33]
  • 23-serotype vaccine for adults (PPV)[33][48]
  • Heptavalent conjugated vaccine for children (PCV)[33]
pyogenes No vaccine[33]
  • Rapid antibiotic treatment helps prevent rheumatic fever[33]
viridans
Oral flora,[48]
penetration through abrasions
Penicillin G[48]
Treponema pallidum subspecies pallidum
  • Penicillin offered to recent sexual partners[75]
  • Antibiotics to pregnant women if risk of transmitting to child[33]
  • No vaccine available[33]
  • Safe sex[33]
Vibrio cholerae
Yersinia pestis Plague:

Genetic transformation

Of the 59 species listed in the table with their clinical characteristics, 11 species (or 19%) are known to be capable of natural genetic transformation.[81] Natural transformation is a bacterial adaptation for transferring DNA from one cell to another. This process includes the uptake of exogenous DNA from a donor cell by a recipient cell and its incorporation into the recipient cell's genome by recombination. Transformation appears to be an adaptation for repairing damage in the recipient cell's DNA. Among pathogenic bacteria, transformation capability likely serves as an adaptation that facilitates survival and infectivity.[81] The pathogenic bacteria able to carry out natural genetic transformation (of those listed in the table) are Campylobacter jejuni, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Legionella pneumophila, Neisseria gonorrhoeae, Neisseria meningitidis, Staphylococcus aureus, Streptococcus pneumoniae and Vibrio cholerae.[citation needed]

See also

Notes

References

  1. ^ .
  2. .
  3. ^ .
  4. ^ "Tuberculosis (TB)". www.who.int.
  5. ^
    PMID 23976885
    .
  6. ^ Hou, Chia-Yi (23 November 2022). "Bacterial infections linked to 1 in 8 deaths in 2019". The Hill. Retrieved 12 December 2022.
  7. PMID 32034433
    .
  8. ^ "Streptococcal Infections - Infectious Diseases". MSD Manual Professional Edition. Retrieved 2 May 2021.
  9. PMID 11885408
    .
  10. .
  11. .
  12. .
  13. .
  14. ^ "Urinary Tract Infections". Retrieved 2010-02-04.
  15. ^ Roxe DM. Urinalysis. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition. Boston: Butterworths; 1990. Chapter 191. Available from: https://www.ncbi.nlm.nih.gov/books/NBK302/
  16. S2CID 4724463
    .
  17. ^ "Impetigo". National Health Service. 19 October 2017. Page last reviewed: 17/07/2014
  18. ^ "erysipelas" at Dorland's Medical Dictionary
  19. ^ "cellulitis" at Dorland's Medical Dictionary
  20. .
  21. .
  22. .
  23. .
  24. ^ .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. ^ .
  31. .
  32. ^ .
  33. ^ .
  34. ^ .
  35. .
  36. ^ Rollins, David M. (2000). "BSCI424 Laboratory Media". University of Maryland. Retrieved 2008-11-18.
  37. ^ Cain, Donna (January 14, 2015). "MacConkey Agar (CCCCD Microbiology". Collin College. Archived from the original on April 26, 2015. Retrieved May 3, 2015.
  38. PMID 6490866
    .
  39. .
  40. .
  41. University of Nebraska
    -Medical Center, Clinical Laboratory Science Program. Retrieved 2015-05-03.
  42. ^ Allen, Mary E. (2005). "MacConkey Agar Plates Protocols". American Society for Microbiology. Archived from the original on 2015-05-07. Created: 30 September 2005. Last update: 01 April 2013
  43. ^ "Hektoen Enteric Agar". Austin Community College District. Retrieved 2015-05-03.
  44. S2CID 6685738
    .
  45. .
  46. ^ "Yersinia pestis" (PDF). Wadsworth Center. 2006.
  47. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw dx dy dz ea eb ec ed ee ef eg eh ei ej ek el em en eo ep eq er es et eu ev ew ex ey ez fa fb fc fd fe ff fg fh fi fj fk fl fm fn fo fp fq fr fs ft fu fv fw fx fy fz ga gb gc gd ge gf gg gh gi gj gk gl gm gn go gp gq gr gs gt gu gv gw gx gy gz ha hb hc hd he hf hg "Bacteria Table" (PDF). Creighton University School of Medicine. Archived from the original (PDF) on 2015-05-01. Retrieved 2015-05-03.
  48. S2CID 19554893
    .
  49. .
  50. ^ "Anthrax in animals". Food and Agriculture Organization. 2001.
  51. ^ "CDC Anthrax Q & A: Treatment". Archived from the original on 5 May 2011. Retrieved 4 April 2011.
  52. ^ "FDA approves raxibacumab to treat inhalational anthrax". Food and Drug Administration. Retrieved 14 December 2012.
  53. ^ a b Itzhak Brook (Jan 28, 2014). "Bacteroides Infection Follow-up". Medscape. Retrieved 2015-09-25.
  54. PMID 24785207
    .
  55. ^ .
  56. .
  57. ^ .
  58. .
  59. from the original on 13 February 2015. Retrieved 12 February 2015.
  60. (PDF) from the original on 6 June 2015.
  61. ^ "ESCHERICHIA COLI". Public Health Agency of Canada. 2012-04-30. Retrieved 2015-06-02.
  62. ^ a b "Signs & Symptoms". Centers for Disease Control and Prevention. 13 December 2018. Page last reviewed: October 26, 2015
  63. .
  64. ^ "Klebsiella pneumoniae in Healthcare Settings". Centers for Disease Control and Prevention. 19 February 2021. Page last reviewed: November 24, 2010. Page last updated: August 27, 2012
  65. PMID 20628664
    .
  66. .
  67. ^ .
  68. ^ "Leprosy Fact sheet N°101". World Health Organization. January 2014. Archived from the original on 2013-12-12.
  69. ^ "Tuberculosis Fact sheet N°104". WHO. October 2015. Archived from the original on 23 August 2012. Retrieved 11 February 2016.
  70. ^ Institut Pasteur Press Office - Vaccine against shigellosis (bacillary dysentery):a promising clinical trial Archived 2009-02-25 at the Wayback Machine 15 January 2009. Retrieved on 27 February 2009
  71. ^ Levinson, W. (2010). Review of Medical Microbiology and Immunology (11th ed.). pp. 94–9.
  72. ^ "Syphilis - CDC Fact Sheet (Detailed)". CDC. 2 November 2015. Archived from the original on 6 February 2016. Retrieved 3 February 2016.
  73. S2CID 23899851
    .
  74. .
  75. .
  76. ^ Wagle PM. (1948). "Recent advances in the treatment of bubonic plague". Indian J Med Sci. 2: 489–94.
  77. PMID 14774219
    .
  78. .
  79. .
  80. ^ a b Bernstein H, Bernstein C, Michod RE (2018). Sex in microbial pathogens. Infection, Genetics and Evolution volume 57, pages 8-25. https://doi.org/10.1016/j.meegid.2017.10.024

External links