Bangabandhu Bridge

Coordinates: 24°23′55″N 89°46′42″E / 24.39861°N 89.77833°E / 24.39861; 89.77833
Source: Wikipedia, the free encyclopedia.

Bangabandhu Bridge
বঙ্গবন্ধু বহুমুখী সেতু
Coordinates24°23′55″N 89°46′42″E / 24.39861°N 89.77833°E / 24.39861; 89.77833
CrossesJamuna River
LocaleTangail and Sirajganj
Official nameBangabandhu Bridge
Other name(s)Jamuna Bridge
Maintained byBangladesh Bridge Authority
Characteristics
DesignBox girder bridge
MaterialPrestressed concrete
Total length4.98 km[1]
Width18.5 m[1]
Longest span99 m
History
DesignerT. Y. Lin International[2]
Constructed byHyundai Engineering & Construction[2]
OpenedJune 1998
Location
Map

Bangabandhu Bridge, also known as the Jamuna Multi-purpose Bridge (

longest bridge in the world when constructed in 1998[3] and at present is the 6th longest bridge in South Asia
. The Jamuna River, which it spans, is one of the three major rivers of Bangladesh, and is fifth largest in the world in discharge volume.

History of construction

Jamuna Multi-purpose Bridge showing
8 rows of bolts for 4 rails

The river

Brahmaputra), along with the lower stretch of the Padma (Ganges) divides Bangladesh into nearly two equal halves. Until now all road and rail communication between the two parts of the country has had to rely on time-consuming ferry services that were often disrupted because of navigability
problems. The need for a bridge over the Jamuna River was felt, especially by the people living in northwestern Bangladesh, for a long time. This perceived need did not go unnoticed by the policy makers.

Jamuna Multipurpose Bridge was constructed by Hyundai Heavy Industries[citation needed] at a cost of $696 million.[4] But the whole bridge project costed 1.24 billion dollar for unknown reason.[4] The cost was shared by IDA, ADB, OECD, and the government of Bangladesh. Of the total, IDA, ADB and OECD supplied $200 million each through a loan with 1% nominal interest,[4] and the remaining $96 million was borne by Bangladesh.[4]

The main bridge is 4.98 kilometres (3.09 mi) long with 49 main

transition spans of 8 metres. The total width of the bridge deck
is 18.5 metres.

The

approach roads were constructed by Samwhan Corporation (Korea
).

Specifications

South toll plaza, Bangabandhu Bridge

Sub-structure

The bridge is supported on tubular steel

river bed. Sand was removed from within the piles by airlifting and replaced with concrete. Out of the 50 piers
, 21 piers are supported on groups of three piles (each of 2.5 m diameter) and 29 piers on groups of two piles (each of 3.15 diameter). The driving of 121 piles started on October 15, 1995, and was completed in July 1996.

The pier stems are founded on concrete

seismic devices. These allow movement of the deck under normal loading conditions but lock in the event of an earthquake to limit overall seismic loads
through the structure and minimise damage.

Superstructure

The main

prestressed and of single box section. The depth of the box varies between 6.5 metres at the piers to 3.25 metres at mid-span. An expansion joint is provided every 7 spans by means of a hinge segment at approximately quarter span. The segments were precast and erected using a two-span erection gantry.The erection gantry was designed by Butterley Engineering Ltd. from Ripley, Derbyshire, UK and at 200m long was thought to be one of the largest in the world at that time.[5]

Gauge

The Bangabandhu Bridge carries a

. The extension of the bridge costed 134 million$ extra later on.

Litigation

Within a decade of inauguration, cracks were detected on the bridge prompting the authorities to impose limits on the number of vehicles allowed to cross at any given time. By early 2008, the government announced its intention to sue the South Korean conglomerate Hyundai for flawed design.[6]

Repair, strengthening and health monitoring

During March 2006-June 2006, Bangladesh University of Engineering and Technology experts worked to identify the causes of extensive cracking of prestressed concrete deck, web and pear head units of almost all segments of the Bridge. The cracks were identified primarily on the longitudinal direction of the bridge deck with some secondary crackings also in the transverse direction. In the analytical investigation, three dimensional model of the bridge was developed in finite elements methods.[7][8]

Repair and strengthening effort included the replacement of modular expansion joints, strengthening the deck with carbon fiber reinforced polymer strips, web-deck connection improvement by carbon fiber reinforced fabrics and also sealing of non-structural cracks. These were conducted in phases. After repair and strengthening, performance of the bridge monitored. Health monitoring campaign was conducted by Bangladesh University of Engineering and Technology for first few years to take reference measurements.[9][10]

See also

Notes

  1. ^ a b "Bangabandhu Jamuna Multipurpose Bridge". Banglapedia. Retrieved 31 January 2020.
  2. ^ a b "Bangabandhu Bridge". Structurae. Retrieved 15 August 2018.
  3. ^ "List of bridges by length".
  4. ^ a b c d e Jenkins, Glenn; Shukla, G. P. (1997). "LINKING EAST AND WEST BANGLADESH: THE JAMUNA BRIDGE PROJECT" (PDF). The Canadian Journal of Program Evaluation (Special Issue): 121–145. Retrieved 6 October 2011.
  5. ^ Appendices to Mattabel 7M, including Butterley Company History, Gwilym Roberts, 2010, p 84.
  6. ^ "Bangladesh set to sue Hyundai over billion-dollar bridge". Google News. Agence France Presse. Archived from the original on 7 June 2012. Retrieved 31 October 2019.
  7. ^ "Bangabandhu Jamuna Multipurpose Bridge Repair" (PDF). IABSE. Retrieved 24 July 2021.
  8. ^ "Bangabandhu Jamuna Multipurpose Bridge Repair-2". IABSE. Retrieved 24 July 2021.
  9. ^ "Bangabandhu Jamuna Multipurpose Bridge Post Repair Monitoring" (PDF). IABSE. Retrieved 24 July 2021.
  10. ^ "Bangabandhu Jamuna Multipurpose Bridge Repair-3" (PDF). IABSE. Retrieved 24 July 2021.