Barton–Kellogg reaction

Source: Wikipedia, the free encyclopedia.
Barton–Kellogg reaction
Named after Sir Derek Barton
Richard M. Kellogg
Reaction type Coupling reaction
Identifiers
RSC ontology ID RXNO:0000495

The Barton–Kellogg reaction is a coupling reaction between a diazo compound and a thioketone, giving an alkene by way of an episulfide intermediate.[1][2][3] The Barton–Kellogg reaction is also known as Barton–Kellogg olefination[4] and Barton olefin synthesis.[5]

The Barton-Kellogg reaction
The Barton-Kellogg reaction

This reaction was pioneered by Hermann Staudinger,[6] and also goes by the name Staudinger type diazo-thioketone coupling.

Reaction mechanism

In the

thiocarbonyl ylide, which then cyclizes to form a stable episulfide. Triphenylphosphine reacts as a nucleophile, opening the three-membered ring to form a sulfaphosphatane. In a manner similar to the Wittig reaction, this structure then expels triphenylphosphine sulfide
to produce an alkene.

Barton-Kellogg reaction mechanism
Barton-Kellogg reaction mechanism

Scope

The diazo compound can be obtained from a

(bis(trifluoroacetoxy)iodo)benzene.[7] The thioketone required for this reaction can be obtained from a ketone and phosphorus pentasulfide. Desulfurization of the episulfide can be accomplished by many phosphines and also by copper
powder.

Barton-Kellogg reaction molecular motor synthesis
Barton-Kellogg reaction molecular motor synthesis

The main advantage of this reaction over the McMurry reaction is the notion that the reaction can take place with two different ketones. In this regard the diazo-thioketone coupling is a cross-coupling rather than a homocoupling.

References

  1. .
  2. .
  3. .
  4. .
  5. ^ "Barton olefin synthesis". Merck Index (15th ed.).
  6. .
  7. .