Base level

Source: Wikipedia, the free encyclopedia.
Aerial picture of the Ebro river as it reaches the Mediterranean Sea by the Ebro Delta

In geology and geomorphology a base level is the lower limit for an erosion process.[1] The modern term was introduced by John Wesley Powell in 1875.[1] The term was subsequently appropriated by William Morris Davis who used it in his cycle of erosion theory.[1][2] The "ultimate base level" is the surface that results from projection of the sea level under landmasses.[1] It is to this base level that topography tends to approach due to erosion, eventually forming a peneplain close to the end of a cycle of erosion.[3][4][5][6]

There are also lesser structural base levels where erosion is delayed by resistant rocks.[1] Examples of this include karst regions underlain by insoluble rock.[7] Base levels may be local when large landmasses are far from the sea or disconnected from it, as in the case of endorheic basins.[1] An example of this is the Messinian salinity crisis, in which the Mediterranean Sea dried up making the base level drop more than 1000 m below sea level.[8][9]

The height of a base level also influences the position of

bed conditions in rivers.[10] A relative drop in base level can trigger re-adjustments in river profiles including knickpoint migration and abandonment of terraces leaving them "hanging".[11] Base level fall is also known to result in progradation of deltas and river sediment at lakes or sea.[12] If the base level falls below the continental shelf, rivers may form a plain of braided rivers until headward erosion penetrates enough inland from the shelfbreak.[12]

When base levels are stable or rising rivers may aggrade.[12] Rising base levels may also drown the lower courses of rivers creating rias. This happened in the Nile during the Zanclean flood when its lower course became, in a relatively short time, a large estuary extending up to 900 km inland from the Mediterranean coast.[9]

Base level change may be related to the following factors:

  1. Sea level change[1]
  2. Tectonic movement[1]
  3. River capture[1]
  4. Extensive sedimentation[13]

References

  1. ^ a b c d e f g h i j Goudie, A.S. (2004). "Base level". In Goudie, A.S. (ed.). Encyclopedia of Geomorphology. Routledge. p. 62.
  2. S2CID 128907423
    .
  3. .
  4. ^ Chorley, R.J. (1973). The History and Study of Landforms or The Development of Geomorphology. Vol. Two: The Life and Work of William Morris Davis, Methuen.
  5. .
  6. .
  7. ^ Ford, Derek C. (2004). "Cave". In Goudie, A.S. (ed.). Encyclopedia of Geomorphology. Routledge. pp. 124–128.
  8. S2CID 129231129
    .
  9. ^ .
  10. ^ Whipple, Kelin X. (2004). "Bedrock channel". In Goudie, A.S. (ed.). Encyclopedia of Geomorphology. Routledge. pp. 81–82.
  11. ^ Spotila, James A. (2004). "Crustal deformation". In Goudie, A.S. (ed.). Encyclopedia of Geomorphology. Routledge. pp. 201–203.
  12. ^ .
  13. .