Bean

Page semi-protected
Source: Wikipedia, the free encyclopedia.
(Redirected from
Beans
)

Bean pods on a plant
Bean plant

A bean is the seed of several plants in the family

vegetables for human or animal food.[1] They can be cooked in many different ways,[2]
including boiling, frying, and baking, and are used in many traditional dishes throughout the world.

Terminology

The word "bean" and its Germanic

usage can refer to a host of different species.[5]

Seeds called "beans" are often included among the crops called "pulses" (

green gram), and aconitifolia (moth bean), were once classified
as Phaseolus but later reclassified—but the taxonomic revision does not entirely stop the use of well-established senses in general usage.

Cultivation

Vicia faba ready for harvest

Unlike the closely related pea, beans are a summer crop that needs warm temperatures to grow. Legumes are capable of nitrogen fixation and hence need less fertiliser than most plants. Maturity is typically 55–60 days from planting to harvest.[6] As the bean pods mature, they turn yellow and dry up, and the beans inside change from green to their mature colour.[clarification needed] Many beans are vines, as such the plants need external support, which may take the form of special "bean cages" or poles. Native Americans customarily grew them along with corn and squash (the so-called Three Sisters),[7] with the tall cornstalks acting as support for the beans.

In more recent times, the so-called "bush bean" has been developed which does not require support and has all its pods develop simultaneously (as opposed to pole beans which develop gradually).[8] This makes the bush bean more practical for commercial production.

History

Acacia farnesiana
Beans in a pod
Baked beans on toast (with egg)
The Beaneater (1580–1590) by Annibale Carracci

Beans were an important source of

protein
throughout Old and New World history, and still are today.

Beans are one of the longest-cultivated plants in history.

Iberia, and transalpine Europe.[11] In the Iliad (8th century BCE), there is a passing mention of beans and chickpeas cast on the threshing floor.[12]

The oldest-known domesticated beans in the Americas were found in Guitarrero Cave, an archaeological site in Peru, and dated to around the second millennium BCE.[13] However, genetic analyses of the common bean Phaseolus show that it originated in Mesoamerica, and subsequently spread southward, along with maize and squash, traditional companion crops.[14]

Most of the kinds of beans commonly eaten today are part of the genus Phaseolus, which originated in the Americas. The first European to encounter them was

P. lunatus); as well as the less widely distributed teparies (P. acutifolius), scarlet runner beans (P. coccineus), and polyanthus beans.[16]

One well-documented use of beans by pre-Columbian people as far north as the Atlantic seaboard is the "Three Sisters" method of companion plant cultivation: Many tribes would grow beans together with maize or "corn", and squash. The corn would not be planted in rows as is done by European agriculture, but in a checkerboard/hex fashion across a field, in separate patches of one to six stalks each. Beans would be planted around the base of the developing stalks, and would vine their way up as the stalks grew. All American beans at that time were vine plants; "bush beans" were cultivated more recently. The cornstalks would work as a

trellis for the bean plants, and the beans would provide much-needed nitrogen
for the corn. Squash would be planted in the spaces between the patches of corn in the field. They would be provided slight shelter from the sun by the corn, would shade the soil and reduce evaporation, and would deter many animals from attacking the corn and beans because their coarse, hairy vines and broad, stiff leaves are difficult or uncomfortable for animals such as deer and raccoons to walk through, crows to land on, and are a deterrent to other animals as well.

Beans were cultivated across Chile in Pre-Hispanic times, likely as far south as Chiloé Archipelago.[17]

Dry beans come from both Old World varieties of broad beans (fava beans) and New World varieties (kidney, black, cranberry, pinto, navy/haricot).

Common genera and species

Types of beans in a market
Market

Most of the foods we call "beans", "legumes", "lentils" and "pulses" belong to the same family, Fabaceae ("leguminous" plants), but are from different genera and species, native to different homelands and distributed worldwide depending on their adaptability.[18] Many varieties are eaten both fresh (the whole pod, and the immature beans may or may not be inside) or shelled (immature seeds, mature and fresh seeds, or mature and dried seeds). Numerous legumes look similar, and have become naturalized in locations across the world, which often lead to similar names for different species.

Genus Species and Common Varieties Probable Homeland Distribution, Cultivation and Climate Notes
Phaseolus P. vulgaris: Kidney Bean, Pinto Bean, Navy Bean (Cannellini, Haricot Beans/French Beans/Pole Beans/Bush Beans), Black Beans, Borlotti Beans

P. lunatus
: Lima Beans

P. coccineus: Runner Beans, Flat Beans

P. acutifolius: Tepary Bean

The Americas Tropical, Subtropical, Warm Temperate Certain varieties contain high levels of toxic phytohemagglutinin. Requires soaking and then cooking at or above 100C for a minimum of 30 minutes, and ideally much longer.[19][20][21]
Pisum
P. sativum: Green Peas/Garden Peas, White Peas, Yellow Peas, Field Peas, Snow Peas, Snap Peas
Mediterranean
Subtropical, Temperate, Occasionally Cool Tropical
Vigna V. radiata: Mung Bean

V. mungo: Urad

V. unguiculata (Cowpeas): Yardlong bean, Black-eyed Peas

V. aconitifolia: Moth bean

V. angularis
: Adzuki beans

Mostly South Asia Equatorial, Pantropical, Warm Subtropical, Hot Temperate
Cajanus C. cajan: Pigeon Pea Indian Subcontinent Pantropical, Equatorial
Lens
L. culinaris
(Lentils): Red Lentil, Green Lentil, Puy Lentil
Near East/Levant Temperate, Subtropical, Cool Tropical
Cicer C. arietinum: Chickpeas (Garbanzo Beans) Turkey/Levant/Near East Temperate, Subtropical, Cool Tropical
Vicia V. faba: Fava Beans (Broad Beans)

V. ervilia: Bitter vetch

V. sativa: Common vetch

Near East Subtropical, Temperate Causes Favism in those susceptible.[22][23]
Arachis A. hypogaea: Peanut (Groundnut) South America Warm Subtropical, Cool Tropical
Glycine
G. max
: Soybean
East Asia Hot Temperate, Subtropical, Cool Tropical
Macrotyloma M. uniflorum: Horsegram South Asia Tropical, Subtropical
Mucuna M. pruriens: Velvet Bean Tropical Asia and Africa Tropical, Warm Subtropical Contains L-DOPA,[24] and smaller amounts of other psychoactive compounds. Can also cause itching and rashes on contact.
Lupinus L. albus: White Lupin

L. mutabilis: Tarwi/Andean Lupin

The Mediterranean, Balkans, Levant (albinus), The Andes (mutabilis) Subtropical, Temperate Requires prolonged soaking in the correct way to reduce toxic compounds.[25]
Ceratonia
C. siliqua
: Carob bean
Mediterranean, Middle East Subtropical, Arid Subtropical, Hot Temperate
Canavalia C. gladiata: Sword Bean

C. ensiformis: Jack Beans

South Asia or Africa (C. gladiata), Brazil and South America (C. Ensiformis) Tropical
Cyamopsis
C. tetragonoloba
: Guar Bean
Africa or South Asia Tropical, Semi-Arid Source of Guar gum
Lablab
L. purpureus
: Hyacinth Bean/Lablab Bean
South Asia, Indian Subcontinent or Africa Tropical
Psophocarpus
P. tetranoglobulus
:
Winged Bean
New Guinea Tropical,
Equatorial
Clitoria C. ternatea: Butterfly Pea Equatorial and Tropical Asia Tropical, Subtropical Flowers used as a natural food colouring
Lathyrus L. sativus: Grass Pea

L. tuberosus: Tuberous Pea

Balkans, India or Asia Subtropical Can cause Lathyrism if used as staple.[26][27]
Trifolium T. repens: White Clover

T. pratense: Red Clover

Europe and Central Asia Subtropical, Temperate
Medicago M. sativa: Alfalfa Central Asia Subtropical, Temperate
Melilotus M. officinalis: Sweet Clover Europe and Central Asia Subtropical, Temperate Contains Coumarins, an important class of perfume ingredients. Coumarin is also a blood thinner.
Tamarindus T. indica: Tamarind Africa Tropical, Subtropical

Bean seed storage

As of 2023, the Norwegian Svalbard Global Seed Vault holds more than 40,000 accessions of Phaseolus bean species.[28]

Properties

Nutrition

Green beans, raw
Nutritional value per 100 g (3.5 oz)
Energy31 kcal (130 kJ)
6.97 g
Sugars3.26 g
Dietary fiber2.7 g
0.22 g
1.83 g
Niacin (B3)
5%
0.734 mg
Vitamin B6
8%
0.141 mg
Folate (B9)
8%
33 μg
Vitamin C
14%
12.2 mg
MineralsQuantity
%DV
Calcium
3%
37 mg
Iron
6%
1.03 mg
Magnesium
6%
25 mg
Phosphorus
3%
38 mg
Potassium
7%
211 mg
Sodium
0%
6 mg
Zinc
2%
0.24 mg
Other constituentsQuantity
Water90.3 g

Percentages estimated using US recommendations for adults,[29] except for potassium, which is estimated based on expert recommendation from the National Academies.[30]

Raw green beans are 90% water, 7%

Daily Value, DV) of vitamin C (15% DV) and vitamin B6 (11% DV), with no other micronutrients
in significant content (table).

Antinutrients

Many types of bean like kidney bean contain significant amounts of antinutrients that inhibit some enzyme processes in the body. Phytic acid and phytates, present in grains, nuts, seeds and beans, interfere with bone growth and interrupt vitamin D metabolism. Pioneering work on the effect of phytic acid was done by Edward Mellanby from 1939.[31][32]

Health concerns

Toxins

Some kinds of raw beans contain a harmful, tasteless toxin: the

food poisoning. Many types of beans contain lectins, and kidney beans have the highest concentrations – especially red kidney beans. As few as 4 or 5 raw beans can cause severe stomachache, vomiting and diarrhoea.[33] A recommended method is to boil the beans for at least ten minutes; under-cooked beans may be more toxic than raw beans.[34]

Cooking beans, without bringing them to a boil, in a

broad beans or chickpeas, soaked and ground without boiling, made into patties, and shallow fried.[35]

Bean poisoning is not well known in the medical community, and many cases may be misdiagnosed or never reported; figures appear not to be available. In the case of the UK National Poisons Information Service, available only to health professionals, the dangers of beans other than red beans were not flagged as of 2008.[35]

Fermentation is used in some parts of Africa to improve the nutritional value of beans by removing toxins. Inexpensive fermentation improves the nutritional impact of flour from dry beans and improves digestibility, according to research co-authored by Emire Shimelis, from the Food Engineering Program at Addis Ababa University.[36] Beans are a major source of dietary protein in Kenya, Malawi, Tanzania, Uganda and Zambia.[37]

Bacterial infection from bean sprouts

It is common to make

outbreaks of disease from bacterial contamination, often by salmonella, listeria, and Escherichia coli, of beansprouts not thoroughly cooked,[38] some causing significant mortality.[39]

Flatulence

Many edible beans, including broad beans, navy beans, kidney beans and soybeans, contain oligosaccharides (particularly raffinose and stachyose), a type of sugar molecule also found in cabbage. An anti-oligosaccharide enzyme is necessary to properly digest these sugar molecules. As a normal human digestive tract does not contain any anti-oligosaccharide enzymes, consumed oligosaccharides are typically digested by bacteria in the large intestine. This digestion process produces gases, such as methane as a byproduct, which are then released as flatulence.[40][41][42][43]

Production

Lablab bean and bean flower cultivated in West Bengal
Lablab in West Bengal

The production data for legumes are published by FAO in three categories:

  1. Pulses dry: all mature and dry seeds of leguminous plants except soybeans and groundnuts.
  2. Oil crops: soybeans and groundnuts.
  3. Fresh vegetable: immature green fresh fruits of leguminous plants.

The following is a summary of FAO data.[44]

Production of legumes (million metric tons)
Crops
[FAO code][45]
1961 1981 2001 2015 2016 Ratio
2016 /1961
Remarks
Total pulses (dry) [1726] 40.78 41.63 56.23 77.57 81.80 2.01 Per capita production had decreased.
(Population increase was 2.4×)
Oil crops (dry)
Soybeans [236] 26.88 88.53 177.02 323.20 334.89 12.46 Drastic increase driven by the demand for animal feeds and oil.
Groundnuts, with shell [242] 14.13 20.58 35.82 45.08 43.98 3.11
Fresh vegetables (80–90% water)
Beans, green [414] 2.63 4.09 10.92 23.12 23.60 8.96
Peas, green [417] 3.79 5.66 12.41 19.44 19.88 5.25

Main crops of "Pulses, Total (dry)" are "Beans, dry [176]" 26.83 million tons, "Peas, dry [187]" 14.36 million tons, "Chick peas [191]" 12.09 million tons, "Cow peas [195]" 6.99 million tons, "Lentils [201]" 6.32 million tons, "Pigeon peas [197]" 4.49 million tons, "Broad beans, horse beans [181]" 4.46 million tons. In general, the consumption of pulses per capita has been decreasing since 1961. Exceptions are lentils and cowpeas.

Flower in Jamalpur
Jamalpur
Top producers, pulses, total [1726][46]
(million metric tons)
Country 2016 Share Remarks
Total 81.80 100%
1 India 17.56 21.47%
2 Canada 8.20 10.03%
3 Myanmar 6.57 8.03%
4 China 4.23 5.17%
5 Nigeria 3.09 3.78%
6 Russia 2.94 3.60%
7 Ethiopia 2.73 3.34%
8 Brazil 2.62 3.21%
9 Australia 2.52 3.09%
10 USA 2.44 2.98%
11 Niger 2.06 2.51%
12 Tanzania 2.00 2.45%
Others 24.82 30.34%

The world leader in production of dry beans (Phaseolus spp),[47] is India, followed by Myanmar (Burma) and Brazil. In Africa, the most important producer is Tanzania.[48]

Top ten dry beans (Phaseolus spp) producers, 2020
Country Production
(tonnes)
Footnote
 India 5,460,000 F
 Myanmar 3,053,012
 Brazil 3,035,290 A
 United States 1,495,180 *
 China 1,281,586
 Tanzania 1,267,648 F
 Mexico 1,056,071
 Kenya 774,366 F
 Argentina 633,823 *
 Uganda 603,980
 World 27,545,942 A

No symbol = official figure, P = official figure, F = FAO estimate, * = unofficial/semi-official/mirror data, C = calculated figure A = aggregate (may include official, semi-official or estimates)

Source:

UN Food and Agriculture Organization (FAO)[49]

See also

References

  1. ^ "Beans and peas are unique foods | ChooseMyPlate". www.choosemyplate.gov. Retrieved 24 January 2020.
  2. ^ Clark, Mellisa. "How to Cook Beans". New York Times Cooking. Retrieved 3 January 2020.
  3. ^ a b c Merriam-Webster, Merriam-Webster's Collegiate Dictionary, Merriam-Webster, archived from the original on 10 October 2020, retrieved 3 May 2016[page needed]
  4. ^ Houghton Mifflin Harcourt, The American Heritage Dictionary of the English Language, Houghton Mifflin Harcourt, archived from the original on 25 September 2015, retrieved 3 May 2016.
  5. ^ a b "Definition And Classification Of Commodities (See Chapter 4)". FAO, United Nations. 1994. Archived from the original on 12 October 2018. Retrieved 5 July 2012.
  6. . Retrieved 18 November 2017 – via Google Books.
  7. . Retrieved 18 November 2017 – via Google Books.
  8. ^ "The Germination Of a Bean" (PDF). Microscopy-uk.org.uk. Archived (PDF) from the original on 9 October 2022. Retrieved 18 November 2017.
  9. ^ Kaplan, pp. 27 ff
  10. S2CID 34052655
    .
  11. , p. 114.
  12. ^ "And as in some great threshing-floor go leaping From a broad pan the black-skinned beans or peas." (Iliad xiii, 589).
  13. .
  14. .
  15. ^ Kaplan, p. 30: Domestication, besides involving selection for larger seed size, also involved selection for pods that did not curl and open when ripe, scattering the beans they contained.
  16. ^ Kaplan, p. 30
  17. .
  18. ^ Boston, 677 Huntington Avenue; Ma 02115 +1495‑1000 (28 October 2019). "Legumes and Pulses". The Nutrition Source. Retrieved 7 April 2022.{{cite web}}: CS1 maint: numeric names: authors list (link)
  19. ISSN 0084-7747
    .
  20. .
  21. .
  22. .
  23. .
  24. PMID 22707835.{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link
    )
  25. .
  26. .
  27. .
  28. ^ "The seeds". Svalbard Global Seed Vault, Norwegian Ministry of Agriculture and Food. 2023. Retrieved 5 November 2023.
  29. ^ United States Food and Drug Administration (2024). "Daily Value on the Nutrition and Supplement Facts Labels". Retrieved 28 March 2024.
  30. PMID 30844154.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  31. .
  32. ^ Ramiel Nagel (26 March 2010). "Living With Phytic Acid - Weston A Price". The Weston A Price Foundation. Retrieved 23 January 2016.
  33. ^ "Natural toxins in food". www.who.int. Retrieved 7 April 2022.
  34. ^
    Bad Bug Book. United States Food and Drug Administration. Archived
    from the original on 9 July 2009. Retrieved 11 July 2009.
  35. ^ a b Vicky Jones (15 September 2008). "Beware of the beans: How beans can be a surprising source of food poisoning". The Independent. Retrieved 23 January 2016.
  36. ISSN 1365-2621
    .
  37. ^ Summary: Fermentation 'improves nutritional value of beans' Archived 22 May 2013 at the Wayback Machine (Sub Saharan Africa page, Science and Development Network website). Paper: Influence of natural and controlled fermentations on α-galactosides, antinutrients and protein digestibility of beans (Phaseolus vulgaris L.)
  38. ^ "Sprouts: What You Should Know". Foodsafety.gov. Retrieved 23 January 2016.
  39. ^ "Shiga toxin-producing E. coli (STEC): Update on outbreak in the EU (27 July 2011, 11:00)". European Centre for Disease Prevention and Control. 27 July 2011. Archived from the original on 15 March 2017.
  40. ^ "Health | Experts make flatulence-free bean". BBC News. 25 April 2006. Archived from the original on 31 March 2009. Retrieved 25 February 2009.
  41. ^ "Flatulence – Overview – Introduction". Nhs.uk. Archived from the original on 21 February 2009. Retrieved 25 February 2009.
  42. . Many legumes, especially soy, navy and lima beans, cause a sudden increase in bacterial activity and gas production a few hours after they're consumed. This is because they contain large amounts of carbohydrates that human digestive enzymes can't convert into absorbable sugars. These carbohydrates therefore leave the upper intestine unchanged and enter the lower reaches, where our resident bacterial population does the job we are unable to do.
  43. . we do not possess any enzymes that are capable of breaking down larger sugars, such as raffinose etc. These 3, 4 and 5 ring sugars are made by plants especially as part of the energy storage system in seeds and beans. If these sugars are ingested, they can't be broken down in the intestines; rather, they travel into the colon, where various bacteria digest them – and in the process produce copious amounts of carbon dioxide gas
  44. ^ FAO STAT Production/Crops.
  45. ^ See Legume § Classification.
  46. ^ All legumes dry.
  47. ^ Dry beans does not include broad beans, dry peas, chickpea, lentil.
  48. ^ FAO Pulses and Derived Products Archived 7 December 2015 at the Wayback Machine.
  49. ^ "Major Food And Agricultural Commodities And Producers – Countries By Commodity". Fao.org. Archived from the original on 6 September 2015. Retrieved 2 February 2015.

Bibliography

External links

This page is based on the copyrighted Wikipedia article: Beans. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy