Benzoylecgonine

Source: Wikipedia, the free encyclopedia.
Benzoylecgonine
Names
IUPAC name
3β-(Benzoyloxy)tropane-2β-carboxylic acid
Systematic IUPAC name
(1R,2R,3S,5S)-3-(Benzoyloxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylic acid
Identifiers
3D model (
JSmol
)
89637
ChEBI
ChemSpider
DrugBank
ECHA InfoCard
100.007.513 Edit this at Wikidata
EC Number
  • 208-263-5
KEGG
UNII
  • InChI=1S/C16H19NO4/c1-17-11-7-8-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/t11-,12+,13-,14+/m0/s1 checkY
    Key: GVGYEFKIHJTNQZ-RFQIPJPRSA-N checkY
  • InChI=1/C16H19NO4/c1-17-11-7-8-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/t11-,12+,13-,14+/m0/s1
    Key: GVGYEFKIHJTNQZ-RFQIPJPRBD
  • CN1[C@H]2CC[C@@H]1[C@H]([C@H](C2)OC(=O)c3ccccc3)C(=O)O
Properties
C16H19NO4
Molar mass 289.331 g·mol−1
Hazards
GHS labelling:
GHS06: Toxic
Danger
H301
P264, P270, P301+P310, P321, P330, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Benzoylecgonine is the main metabolite of cocaine, formed by the liver and excreted in the urine. It is the compound tested for in most cocaine urine drug screens and in wastewater screenings for cocaine use.

Biochemistry and physiology

Chemically, benzoylecgonine is the

methyl ester. It is formed in the liver by the metabolism of cocaine by hydrolysis, catalysed by carboxylesterases, and subsequently excreted in the urine. It is readily synthesised by boiling cocaine freebase in water.[3]

Urinalysis

Benzoylecgonine is the compound tested for in most substantive cocaine drug urinalyses.

Presence in drinking water

Benzoylecgonine is sometimes found in drinking water supplies. In 2005, scientists found surprisingly large quantities of benzoylecgonine in Italy's

non-steroidal anti-inflammatory drug), although the study noted that the amount of each compound present was several orders of magnitude lower than the therapeutic dose and therefore did not pose a risk to the population.[6]

Preliminary studies on ecological systems show that benzoylecgonine has potential toxicity issues.[7] Research is being conducted on degradation options such as advanced oxidation and photocatalysis[8] for this metabolite in an effort to reduce concentrations in waste and surface waters. At environmentally relevant concentrations, benzoylecgonine has been shown to have a negative ecological impact.[7]

See also

References