Bioplastic

Source: Wikipedia, the free encyclopedia.
Biodegradable plastic utensils
Flower wrapping made of PLA-blend bio-flex

Bioplastics are

fossil-fuel plastics (also called petro-based polymers) are derived from petroleum or natural gas
.

One advantage of bioplastics is their independence from

Life cycle analysis studies show that some bioplastics can be made with a lower carbon footprint than their fossil counterparts, for example when biomass is used as raw material and also for energy production. However, other bioplastics' processes are less efficient and result in a higher carbon footprint than fossil plastics.[1][2][3]

The distinction between non-fossil-based (bio)plastic and fossil-based plastic is of limited relevance since materials such as petroleum are themselves merely fossilized biomass. As such, whether any kind of plastic is degradable or non-degradable (durable) depends on its molecular structure, not on whether or not the biomass constituting the raw material is fossilized. Both durable bioplastics, such as

biopolyethylene (bio-based analogues of fossil-based polyethylene terephthalate and polyethylene), and degradable bioplastics, such as polylactic acid, polybutylene succinate, or polyhydroxyalkanoates, exist. Bioplastics must be recycled similar to fossil-based plastics to avoid plastic pollution; "drop-in" bioplastics (such as biopolyethylene) fit into existing recycling streams. On the other hand, recycling biodegradable bioplastics in the current recycling streams poses additional challenges, as it may raise the cost of sorting and decrease the yield and the quality of the recyclate. However, biodegradation is not the only acceptable end-of-life disposal pathway for biodegradable bioplastics, and mechanical and chemical recycling are often the preferred choice from the environmental point of view.[4]

Biodegradability may offer an end-of-life pathway in certain applications, such as agricultural mulch, but the concept of biodegradation is not as straightforward as many believe. Susceptibility to biodegradation is highly dependent on the chemical backbone structure of the polymer, and different bioplastics have different structures, thus it cannot be assumed that bioplastic in the environment will readily disintegrate. Conversely, biodegradable plastics can also be synthesized from fossil fuels.[1][5]

As of 2018, bioplastics represented approximately 2% of the global plastics output (>380 million tons).[6] With continued research on bioplastics, investment in bioplastic companies and rising scrutiny on fossil-based plastics, bioplastics are becoming more dominant in some markets, while the output of fossil plastics also steadily increases.

IUPAC definition

The International Union of Pure and Applied Chemistry define biobased polymer as:

Biobased polymer derived from the biomass or issued from monomers derived from the biomass and which, at some stage in its processing into finished products, can be shaped by flow.

Note 1: Bioplastic is generally used as the opposite of polymer derived from fossil resources.
Note 2: Bioplastic is misleading because it suggests that any polymer derived from the biomass is environmentally friendly.
Note 3: The use of the term "bioplastic" is discouraged. Use the expression "biobased polymer".
Note 4: A biobased polymer similar to a petrobased one does not imply any superiority with respect to the environment unless the comparison of respective life cycle assessments is favourable.[7]

Proposed applications

Boxed products made from bioplastics and other biodegradable plastics

Few commercial applications exist for bioplastics. Cost and performance remain problematic. Typical is the example of Italy, where biodegradable plastic bags are compulsory for shoppers since 2011 with the introduction of a specific law.[8] Beyond structural materials, electroactive bioplastics are being developed that promise to carry electric current.[9]

Bioplastics are used for disposable items, such as packaging, crockery, cutlery, pots, bowls, and straws.[10]

Biopolymers are available as coatings for paper rather than the more common petrochemical coatings.[11]

Bioplastics called drop-in bioplastics are chemically identical to their fossil-fuel counterparts but made from renewable resources. Examples include

bio-PP,[12] and biobased nylons.[13][14][15] Drop-in bioplastics are easy to implement technically, as existing infrastructure can be used.[16] A dedicated bio-based pathway allows to produce products that cannot be obtained through traditional chemical reactions and can create products which have unique and superior properties, compared to fossil-based alternatives.[15]

Types

Polysaccharide-based bioplastics

Starch-based plastics

Packaging peanuts made from bioplastics (thermoplastic starch)

Plasticizer such as glycerol, glycol, and sorbitol can also be added so that the starch can also be processed thermo-plastically.[19] The characteristics of the resulting bioplastic (also called "thermoplastic starch") can be tailored to specific needs by adjusting the amounts of these additives. Conventional polymer processing techniques can be used to process starch into bioplastic, such as extrusion, injection molding, compression molding and solution casting.[19] The properties of starch bioplastic is largely influenced by amylose/amylopectin ratio. Generally, high-amylose starch results in superior mechanical properties.[20] However, high-amylose starch has less processability because of its higher gelatinization temperature[21] and higher melt viscosity.[22]

Starch-based bioplastics are often blended with biodegradable polyesters to produce starch/polylactic acid,[23] starch/polycaprolactone[24] or starch/Ecoflex[25] (polybutylene adipate-co-terephthalate produced by BASF[26]) blends. These blends are used for industrial applications and are also compostable. Other producers, such as Roquette, have developed other starch/polyolefin blends. These blends are not biodegradable, but have a lower carbon footprint than petroleum-based plastics used for the same applications.[27]

Starch is cheap, abundant, and renewable.[28]

Starch-based films (mostly used for packaging purposes) are made mainly from starch blended with thermoplastic polyesters to form biodegradable and compostable products. These films are seen specifically in consumer goods packaging of magazine wrappings and bubble films. In food packaging, these films are seen as bakery or fruit and vegetable bags. Composting bags with this films are used in selective collecting of organic waste.[28] Further, starch-based films can be used as a paper.[29][30]

Starch-based nanocomposites have been widely studied, showing improved mechanical properties, thermal stability, moisture resistance, and gas barrier properties.[31]

Cellulose-based plastics

A packaging blister made from cellulose acetate, a bioplastic

cellulose esters (including cellulose acetate and nitrocellulose) and their derivatives, including celluloid
.

Cellulose can become thermoplastic when extensively modified. An example of this is cellulose acetate, which is expensive and therefore rarely used for packaging. However, cellulosic fibers added to starches can improve mechanical properties, permeability to gas, and water resistance due to being less hydrophilic than starch.[28]

A group at Shanghai University was able to construct a novel green plastic based on cellulose through a method called hot pressing.[32]

Protein-based plastics

Development of an edible casein film overwrap at USDA[33]

Bioplastics can be made from proteins from different sources. For example, wheat gluten and casein show promising properties as a raw material for different biodegradable polymers.[34]

Additionally, soy protein is being considered as another source of bioplastic. Soy proteins have been used in plastic production for over one hundred years. For example, body panels of an original Ford automobile were made of soy-based plastic.[35]

There are difficulties with using soy protein-based plastics due to their water sensitivity and relatively high cost. Therefore, producing blends of soy protein with some already-available biodegradable polyesters improves the water sensitivity and cost.[36]

Some aliphatic polyesters

The

poly-3-hydroxybutyrate
(PHB), polyhydroxyvalerate (PHV) and polyhydroxyhexanoate (PHH).

Polylactic acid (PLA)

Mulch film made of polylactic acid (PLA)-blend bio-flex

fused deposition modeling
in 3D printers.

Poly-3-hydroxybutyrate

The biopolymer poly-3-hydroxybutyrate (PHB) is a polyester produced by certain bacteria processing glucose, corn starch[39] or wastewater.[40] Its characteristics are similar to those of the petroplastic polypropylene (PP). PHB production is increasing. The South American sugar industry, for example, has decided to expand PHB production to an industrial scale. PHB is distinguished primarily by its physical characteristics. It can be processed into a transparent film with a melting point higher than 130 degrees Celsius, and is biodegradable without residue.

Polyhydroxyalkanoates

fermentation of sugar or lipids. They are produced by the bacteria to store carbon and energy. In industrial production, the polyester is extracted and purified from the bacteria by optimizing the conditions for the fermentation of sugar. More than 150 different monomers
can be combined within this family to give materials with extremely different properties. PHA is more ductile and less elastic than other plastics, and it is also biodegradable. These plastics are being widely used in the medical industry.

Polyamide 11

PA 12
, although emissions of greenhouse gases and consumption of nonrenewable resources are reduced during its production. Its thermal resistance is also superior to that of PA 12. It is used in high-performance applications like automotive fuel lines, pneumatic airbrake tubing, electrical cable antitermite sheathing, flexible oil and gas pipes, control fluid umbilicals, sports shoes, electronic device components, and catheters.

A similar plastic is Polyamide 410 (PA 410), derived 70% from castor oil, under the trade name EcoPaXX, commercialized by DSM.[41] PA 410 is a high-performance polyamide that combines the benefits of a high melting point (approx. 250 °C), low moisture absorption and excellent resistance to various chemical substances.

Bio-derived polyethylene

The basic building block (monomer) of polyethylene is ethylene. Ethylene is chemically similar to, and can be derived from ethanol, which can be produced by fermentation of agricultural feedstocks such as sugar cane or corn. Bio-derived polyethylene is chemically and physically identical to traditional polyethylene – it does not biodegrade but can be recycled. The Brazilian chemicals group Braskem claims that using its method of producing polyethylene from sugar cane ethanol captures (removes from the environment) 2.15 tonnes of CO2 per tonne of Green Polyethylene produced.

Genetically modified feedstocks

With

GM
corn being a common feedstock, it is unsurprising that some bioplastics are made from this.

Under the bioplastics manufacturing technologies there is the "plant factory" model, which uses

genetically modified bacteria
to optimise efficiency.

Polyhydroxyurethanes

The condensation of polyamines and cyclic carbonates produces polyhydroxyurethanes.[42] Unlike traditional cross-linked polyurethanes, cross-linked polyhydroxyurethanes are in principle amenable to recycling and reprocessing through dynamic transcarbamoylation reactions.[43]

Lipid derived polymers

A number bioplastic classes have been synthesized from

epoxy resins[48] and a number of other types of polymers have been developed with comparable properties to crude oil based materials. The recent development of olefin metathesis has opened a wide variety of feedstocks to economical conversion into biomonomers and polymers.[49] With the growing production of traditional vegetable oils as well as low cost microalgae derived oils,[50]
there is huge potential for growth in this area.

Environmental impact

Bottles made from cellulose acetate biograde

Materials such as starch, cellulose, wood, sugar and biomass are used as a substitute for fossil fuel resources to produce bioplastics; this makes the production of bioplastics a more sustainable activity compared to conventional plastic production.

environmental sustainability of their products by using bioplastics [56]

Although bioplastics save more nonrenewable energy than conventional plastics and emit less greenhouse gasses compared to conventional plastics, bioplastics also have negative environmental impacts such as eutrophication and acidification.[55] Bioplastics induce higher eutrophication potentials than conventional plastics.[55] Biomass production during industrial farming practices causes nitrate and phosphate to filtrate into water bodies; this causes eutrophication, the process in which a body of water gains excessive richness of nutrients.[55] Eutrophication is a threat to water resources around the world since it causes harmful algal blooms that create oxygen dead zones, killing aquatic animals.[57] Bioplastics also increase acidification.[55] The high increase in eutrophication and acidification caused by bioplastics is also caused by using chemical fertilizer in the cultivation of renewable raw materials to produce bioplastics.[51]

Other environmental impacts of bioplastics include exerting lower human and terrestrial

loss of biodiversity, and they are mainly are a result of land use associated with bioplastics.[55] Land use for bioplastics production leads to lost carbon sequestration and increases the carbon costs while diverting land from its existing uses [59]

Although bioplastics are extremely advantageous because they reduce non-renewable consumption and GHG emissions, they also negatively affect the environment through land and water consumption, using pesticide and fertilizer, eutrophication and acidification; hence one's preference for either bioplastics or conventional plastics depends on what one considers the most important environmental impact.[51]

Another issue with bioplastics, is that some bioplastics are made from the edible parts of crops. This makes the bioplastics compete with food production because the crops that produce bioplastics can also be used to feed people.[60] These bioplastics are called "1st generation feedstock bioplastics". 2nd generation feedstock bioplastics use non-food crops (cellulosic feedstock) or waste materials from 1st generation feedstock (e.g. waste vegetable oil). Third generation feedstock bioplastics use algae as the feedstock.[61]

Biodegradation of Bioplastics

Packaging air pillow made of PLA-blend bio-flex

Biodegradation of any plastic is a process that happens at solid/liquid interface whereby the enzymes in the liquid phase depolymerize the solid phase.

Biodegradability of bioplastics occurs under various environmental conditions including soil, aquatic environments and compost.[64] Both the structure and composition of biopolymer or bio-composite have an effect on the biodegradation process, hence changing the composition and structure might increase biodegradability.[64] Soil and compost as environment conditions are more efficient in biodegradation due to their high microbial diversity.[64] Composting not only biodegrades bioplastics efficiently but it also significantly reduces the emission of greenhouse gases.[64] Biodegradability of bioplastics in compost environments can be upgraded by adding more soluble sugar and increasing temperature.[64] Soil environments on the other hand have high diversity of microorganisms making it easier for biodegradation of bioplastics to occur.[64] However, bioplastics in soil environments need higher temperatures and a longer time to biodegrade.[64] Some bioplastics biodegrade more efficiently in water bodies and marine systems; however, this causes danger to marine ecosystems and freshwater.[64]
Hence it is accurate to conclude that biodegradation of bioplastics in water bodies which leads to the death of aquatic organisms and unhealthy water can be noted as one of the negative environmental impacts of bioplastics.

Industry and markets

Tea bags made of polylactide (PLA) (peppermint tea)

While plastics based on organic materials were manufactured by chemical companies throughout the 20th century, the first company solely focused on bioplastics—Marlborough Biopolymers—was founded in 1983. However, Marlborough and other ventures that followed failed to find commercial success, with the first such company to secure long-term financial success being the Italian company Novamont, founded in 1989.[65]

Bioplastics remain less than one percent of all plastics manufactured worldwide.[66][67] Most bioplastics do not yet save more carbon emissions than are required to manufacture them.[68] It is estimated that replacing 250 million tons of the plastic manufactured each year with bio-based plastics would require 100 million hectares of land, or 7 percent of the arable land on Earth. And when bioplastics reach the end of their life cycle, those designed to be compostable and marketed as biodegradable are often sent to landfills due to the lack of proper composting facilities or waste sorting, where they then release methane as they break down anaerobically.[69]

COPA (Committee of Agricultural Organisation in the European Union) and COGEGA (General Committee for the Agricultural Cooperation in the European Union) have made an assessment of the potential of bioplastics in different sectors of the European economy:

Sector Tonnes per year
Catering products 450,000 450000
 
Organic waste bags 100,000 100000
 
Biodegradable
mulch foils
130,000 130000
 
Biodegradable foils for diapers 80,000 80000
 
Diapers, 100% biodegradable 240,000 240000
 
Foil packaging 400,000 400000
 
Vegetable packaging 400,000 400000
 
Tyre components 200,000 200000
 
Total: 2,000,000

History and development of bioplastics

  • 1925: Polyhydroxybutyrate was isolated and characterised by French microbiologist Maurice Lemoigne
  • 1855: First (inferior) version of linoleum produced
  • 1862: At the Great London Exhibition,
    Parkesine, the first thermoplastic. Parkesine is made from nitrocellulose and had very good properties, but exhibits extreme flammability. (White 1998)[70]
  • 1897: Still produced today, Galalith is a milk-based bioplastic that was created by German chemists in 1897. Galalith is primarily found in buttons. (Thielen 2014)[71]
  • 1907: Leo Baekeland invented Bakelite, which received the National Historic Chemical Landmark for its non-conductivity and heat-resistant properties. It is used in radio and telephone casings, kitchenware, firearms and many more products. (Pathak, Sneha, Mathew 2014)
  • 1912: Brandenberger invents Cellophane out of wood, cotton, or hemp cellulose. (Thielen 2014)[71]
  • 1920s: Wallace Carothers finds Polylactic Acid (PLA) plastic. PLA is incredibly expensive to produce and is not mass-produced until 1989. (Whiteclouds 2018)
  • 1926: Maurice Lemoigne invents polyhydroxybutyrate (PHB) which is the first bioplastic made from bacteria. (Thielen 2014)[71]
  • 1930s: The first bioplastic car was made from soy beans by Henry Ford. (Thielen 2014)[71][72]
  • 1940-1945: During World War II, an increase in plastic production is seen as it is used in many wartime materials. Due to government funding and oversight the United States production of plastics (in general, not just bioplastics) tripled during 1940-1945 (Rogers 2005).[73] The 1942 U.S. government short film The Tree in a Test Tube illustrates the major role bioplastics played in the World War II victory effort and the American economy of the time.
  • 1950s: Amylomaize (>50% amylose content corn) was successfully bred and commercial bioplastics applications started to be explored. (Liu, Moult, Long, 2009)[74] A decline in bioplastic development is seen due to the cheap oil prices, however the development of synthetic plastics continues.
  • 1970s: The environmental movement spurred more development in bioplastics. (Rogers 2005)[73]
  • 1983: The first bioplastics company, Marlborough Biopolymers, is started which uses a bacteria-based bioplastic called biopal. (Feder 1985)[75]
  • 1989: The further development of PLA is made by Dr. Patrick R. Gruber when he figures out how to create PLA from corn. (Whiteclouds 2018). The leading bioplastic company is created called Novamount. Novamount uses matter-bi, a bioplastic, in multiple different applications. (Novamount 2018)[76]
  • 1992: It is reported in Science that PHB can be produced by the plant Arabidopsis thaliana. (Poirier, Dennis, Klomparens, Nawrath, Somerville 1992)[77]
  • Late 1990s: The development of TP starch and BIOPLAST from research and production of the company BIOTEC lead to the BIOFLEX film. BIOFLEX film can be classified as blown film extrusion, flat film extrusion, and injection moulding lines. These three classifications have applications as follows: Blown films - sacks, bags, trash bags, mulch foils, hygiene products, diaper films, air bubble films, protective clothing, gloves, double rib bags, labels, barrier ribbons; Flat films - trays, flower pots, freezer products and packaging, cups, pharmaceutical packaging; Injection moulding - disposable cutlery, cans, containers, performed pieces, CD trays, cemetery articles, golf tees, toys, writing materials. (Lorcks 1998)[78]
  • 2001: Metabolix inc. purchases Monsanto's biopol business (originally Zeneca) which uses plants to produce bioplastics. (Barber and Fisher 2001)[79]
  • 2001: Nick Tucker uses elephant grass as a bioplastic base to make plastic car parts. (Tucker 2001)[80]
  • 2005: Cargill and Dow Chemicals is rebranded as NatureWorks and becomes the leading PLA producer. (Pennisi 2016)[81]
  • 2007: Metabolix inc. market tests its first 100% biodegradable plastic called Mirel, made from corn sugar fermentation and genetically engineered bacteria. (Digregorio 2009)[82]
  • 2012: A bioplastic is developed from seaweed proving to be one of the most environmentally friendly bioplastics based on research published in the journal of pharmacy research. (Rajendran, Puppala, Sneha, Angeeleena, Rajam 2012)[83]
  • 2013: A patent is put on bioplastic derived from blood and a crosslinking agent like sugars, proteins, etc. (iridoid derivatives, diimidates, diones, carbodiimides, acrylamides, dimethylsuberimidates, aldehydes, Factor XIII, dihomo bifunctional NHS esters, carbonyldiimide, glyoxyls [sic], proanthocyanidin, reuterin). This invention can be applied by using the bioplastic as tissue, cartilage, tendons, ligaments, bones, and being used in stem cell delivery. (Campbell, Burgess, Weiss, Smith 2013)[84][85]
  • 2014: It is found in a study published in 2014 that bioplastics can be made from blending vegetable waste (parsley and spinach stems, the husks from cocoa, the hulls of rice, etc.) with TFA solutions of pure cellulose creates a bioplastic. (Bayer, Guzman-Puyol, Heredia-Guerrero, Ceseracciu, Pignatelli, Ruffilli, Cingolani, and Athanassiou 2014)[86]
  • 2016: An experiment finds that a car bumper that passes regulation can be made from nano-cellulose based bioplastic biomaterials using banana peels. (Hossain, Ibrahim, Aleissa 2016)[87]
  • 2017: A new proposal for bioplastics made from Lignocellulosics resources (dry plant matter). (Brodin, Malin, Vallejos, Opedal, Area, Chinga-Carrasco 2017)[88]
  • 2018: Many developments occur including Ikea starting industrial production of bioplastics furniture (Barret 2018), Project Effective focusing on replacing nylon with bio-nylon (Barret 2018), and the first packaging made from fruit (Barret 2018).[89]
  • 2019: Five different types of Chitin nanomaterials were extracted and synthesized by the 'Korea Research Institute of Chemical Technology' to verify strong personality and antibacterial effects. When buried underground, 100% biodegradation was possible within six months.[90]

*This is not a comprehensive list. These inventions show the versatility of bioplastics and important breakthroughs. New applications and bioplastics inventions continue to occur.

Year Bioplastic Discovery or Development
1862 Parkesine - Alexander Parkes
1868 Celluloid - John Wesley Hyatt
1897 Galalith - German chemists
1907 Bakelite - Leo Baekeland
1912 Cellophane - Jacques E. Brandenberger
1920s Polylactic Acid (PLA) - Wallace Carothers
1926 Polyhydroxybutyrate (PHB) - Maurice Lemoigne
1930s Soy bean-based bioplastic car - Henry Ford
1983 Biopal - Marlborough Biopolymers
1989 PLA from corn - Dr. Patrick R. Gruber; Matter-bi - Novamount
1992 PHB can be produced by Arabidopsis thaliana (a small flowering plant)
1998 Bioflex film (blown, flat, injection molding) leads to many different applications of bioplastic
2001 PHB can be produced by elephant grass
2007 Mirel (100% biodegradable plastic) by Metabolic inc. is market tested
2012 Bioplastic is developed from seaweed
2013 Bioplastic made from blood and a cross-linking agent which is used in medical procedures
2014 Bioplastic made from vegetable waste
2016 Car bumper made from banana peel bioplastic
2017 Bioplastics made from lignocellulosic resources (dry plant matter)
2018 Bioplastic furniture, bio-nylon, packaging from fruit
Bioplastics Development Center - University of Massachusetts Lowell
A pen made with bioplastics (Polylactide, PLA)

Testing procedures

A bioplastic shampoo bottle made of PLA-blend bio-flex

Industrial compostability – EN 13432, ASTM D6400

The

ASTM
6400 standard is the regulatory framework for the United States and has similar requirements.

Many

Oxo Biodegradable
do not comply with these standards in their current form.

Compostability – ASTM D6002

The ASTM D 6002 method for determining the compostability of a plastic defined the word compostable as follows:

that which is capable of undergoing biological decomposition in a compost site such that the material is not visually distinguishable and breaks down into carbon dioxide, water, inorganic compounds and biomass at a rate consistent with known compostable materials.[91]

This definition drew much criticism because, contrary to the way the word is traditionally defined, it completely divorces the process of "composting" from the necessity of it leading to humus/compost as the end product. The only criterion this standard does describe is that a compostable plastic must look to be going away as fast as something else one has already established to be compostable under the traditional definition.

Withdrawal of ASTM D 6002

In January 2011, the ASTM withdrew standard ASTM D 6002, which had provided plastic manufacturers with the legal credibility to label a plastic as

compostable
. Its description is as follows:

This guide covered suggested criteria, procedures, and a general approach to establish the compostability of environmentally degradable plastics.[92]

The ASTM has yet to replace this standard.

Biobased – ASTM D6866

The ASTM D6866 method has been developed to certify the biologically derived content of bioplastics. Cosmic rays colliding with the atmosphere mean that some of the carbon is the radioactive isotope

mass spectrometer.[93][94]

There is an important difference between

biodegradability and biobased content. A bioplastic such as high-density polyethylene (HDPE)[95]
can be 100% biobased (i.e. contain 100% renewable carbon), yet be non-biodegradable. These bioplastics such as HDPE nonetheless play an important role in greenhouse gas abatement, particularly when they are combusted for energy production. The biobased component of these bioplastics is considered carbon-neutral since their origin is from biomass.

Anaerobic
biodegradability
– ASTM D5511-02 and ASTM D5526

The ASTM D5511-12 and ASTM D5526-12 are testing methods that comply with international standards such as the ISO DIS 15985 for the

biodegradability
of plastic.

See also

References

  1. ^
    PMID 35075395
    .
  2. .
  3. .
  4. .
  5. ^ "Bioplastics (PLA) - World Centric". worldcentric.org. Archived from the original on 2019-03-09. Retrieved 2018-07-15.
  6. S2CID 202017074
    .
  7. S2CID 98107080. Archived from the original
    (PDF) on 2015-03-19. Retrieved 2013-07-17.
  8. ^ "Consiglio dei Ministri conferma la messa al bando dei sacchetti di plastica non biodegradabili - Ministero dell'Ambiente e della Tutela del Territorio e del Mare". minambiente.it.
  9. USDA
    Agricultural Research Service. Retrieved 2011-11-28.
  10. PMID 22188473
    .
  11. .
  12. ^ "Bio-based drop-in, smart drop-in and dedicated chemicals" (PDF). Archived from the original (PDF) on 2020-11-02. Retrieved 2020-10-30.
  13. ^ Duurzame bioplastics op basis van hernieuwbare grondstoffen
  14. ^ What are bioplastics?
  15. ^ a b Drop in bioplastics
  16. ^ "Bio-based drop-in, smart drop-in and dedicated chemicals" (PDF). Archived from the original (PDF) on 2020-11-02. Retrieved 2020-10-30.
  17. ^ "Types of Bioplastic | InnovativeIndustry.net". Retrieved 2020-07-11.
  18. ^ Make Potato Plastic!. Instructables.com (2007-07-26). Retrieved 2011-08-14.
  19. ^
    ISSN 0079-6700
    .
  20. .
  21. .
  22. .
  23. .
  24. ^ "Starch based Bioplastic Manufacturers and Suppliers". bioplasticsonline.net. Archived from the original on August 14, 2011.
  25. ^ Sherman, Lilli Manolis (1 July 2008). "Enhancing biopolymers: additives are needed for toughness, heat resistance & processability". Plastics Technology. Archived from the original on 17 April 2016.
  26. ^ "BASF announces major bioplastics production expansion". Archived from the original on 2012-03-31. Retrieved 2011-08-31.
  27. ^ "Roquette, nouvel acteur sur le marché des plastiques, lance GAÏALENE®: une gamme innovante de plastique végétal". Archived from the original on 2012-03-31. Retrieved 2011-08-31.
  28. ^
  29. ^ Avant, Sandra (April 2017). "Better Paper, Plastics With Starch". USDA. Archived from the original on 2018-12-14. Retrieved 2018-12-14.
  30. ISSN 0034-3617
    .
  31. .
  32. .
  33. ^ OBrien (February 2018). "That's a Wrap: Edible Food Wraps from ARS". USDA Agricultural Research: 22. Retrieved 4 December 2021.
  34. PMID 19528060
    .
  35. .
  36. .
  37. ^ "History, Travel, Arts, Science, People, Places". smithsonianmag.com.
  38. .
  39. ^ "Mirel: PHAs grades for Rigid Sheet and Thermoforming". Archived from the original on 2012-03-31. Retrieved 2011-08-31.
  40. ^ "Micromidas is using carefully constructed populations of bacteria to convert organic waste into bio-degradable plastics". Archived from the original on October 23, 2011.
  41. ^ "Home". dsm.com.
  42. .
  43. .
  44. .
  45. .
  46. .
  47. .
  48. .
  49. .
  50. .
  51. ^ a b c d e f Gironi, F., and Vincenzo Piemonte. "Bioplastics and Petroleum-Based Plastics: Strengths and Weaknesses." Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 33, no. 21, 2011, pp. 1949–59, doi:10.1080/15567030903436830.
  52. ^ Yates, Madeleine R., and Claire Y. Barlow. "Life Cycle Assessments of Biodegradable, Commercial Biopolymers - A Critical Review." Resources, Conservation and Recycling, vol. 78, Elsevier B.V., 2013, pp. 54–66, doi:10.1016/j.resconrec.2013.06.010.
  53. ^ "Are biodegradable plastics better for the environment?". Axion. 6 February 2018. Retrieved 2018-12-14.
  54. ^ Miles, Lindsay (22 March 2018). "Biodegradable Plastic: Is It Really Eco-Friendly?". Retrieved 2018-12-14.
  55. ^ a b c d e f g h i Weiss, Martin, et al. "A Review of the Environmental Impacts of Biobased Materials." Journal of Industrial Ecology, vol. 16, no. SUPPL.1, 2012, doi:10.1111/j.1530-9290.2012.00468.x.
  56. ^ Brockhaus, Sebastian, et al. "A Crossroads for Bioplastics: Exploring Product Developers' Challenges to Move beyond Petroleum-Based Plastics." Journal of Cleaner Production, vol. 127, Elsevier Ltd, 2016, pp. 84–95, doi:10.1016/j.jclepro.2016.04.003.
  57. ^ Sinha, E., et al. "Eutrophication Will Increase during the 21st Century as a Result of Precipitation Changes." Science, vol. 357, no. July, 2017, pp. 405–08.
  58. ^ Rosas, Francisco, et al. "Nitrous Oxide Emission Reductions from Cutting Excessive Nitrogen Fertilizer Applications." Climatic Change, vol. 132, no. 2, 2015, pp. 353–67, doi:10.1007/s10584-015-1426-y.
  59. ^ Gironi, F., and Vincenzo Piemonte. "Land-Use Change Emissions: How Green Are the Bioplastics?" Environmental Progress & Sustainable Energy, vol. 30, no. 4, 2010, pp. 685–691, doi:10.1002/ep.10518.
  60. ^ Cho, Renee. "The truth about bioplastics". phys.org. Retrieved 31 October 2021.
  61. ^ Bioplastic Feedstock 1st, 2nd and 3rd Generations
  62. ^ Degli-Innocenti, Francesco. "Biodegradation of Plastics and Ecotoxicity Testing: When Should It Be Done." Frontiers in Microbiology, vol. 5, no. SEP, 2014, pp. 1–3, doi:10.3389/fmicb.2014.00475.
  63. ^ Gómez, Eddie F., and Frederick C. Michel. "Biodegradability of Conventional and Bio-Based Plastics and Natural Fiber Composites during Composting, Anaerobic Digestion and Long-Term Soil Incubation." Polymer Degradation and Stability, vol. 98, no. 12, 2013, pp. 2583–2591., doi:10.1016/j.polymdegradstab.2013.09.018.
  64. ^ a b c d e f g h i Emadian, S. Mehdi, et al. "Biodegradation of Bioplastics in Natural Environments." Waste Management, vol. 59, Elsevier Ltd, 2017, pp. 526–36, doi:10.1016/j.wasman.2016.10.006.
  65. ^ Barrett, Axel (5 September 2018). "The History and Most Important Innovations of Bioplastics". Bioplastics News.
  66. ISSN 0091-9578
    .
  67. ^ Darby, Debra (August 2012). "Bioplastics Industry Report". BioCycle. 53 (8): 40–44.
  68. S2CID 23782848
    .
  69. ^ Dolfen, Julia. "Bioplastics- Opportunities and Challenges." US Composting Council. 2012 Compostable Plastics Symposium, Jan. 2012, Austin, Texas, https://compostingcouncil.org/admin/wp-content/uploads/2012/01/Dolfen.pdf Archived 2018-09-26 at the Wayback Machine
  70. S2CID 137545344
    .
  71. ^
  72. ^ "Soybean Car - The Henry Ford". www.thehenryford.org. Retrieved 2020-12-09.
  73. ^ a b "A Brief History of Plastic". The Brooklyn Rail. May 2005. Retrieved 2018-09-27.
  74. .
  75. .
  76. ^ "Novamont". Bioplastics News. 2013-12-30. Retrieved 2018-09-27.
  77. ISSN 0378-1097
    .
  78. .
  79. .
  80. ^ "The History and Most Important Innovations of Bioplastics". Bioplastics News. 2018-07-05. Retrieved 2018-09-27.
  81. JSTOR 3976489
    .
  82. .
  83. .
  84. ^ Campbell, Phil G.; Burgess, James E.; Weiss, Lee E.; Smith, Jason (18 June 2015). "Methods and Apparatus for Manufacturing Plasma Based Plastics and Bioplastics Produced Therefrom".
  85. ISSN 0024-9297
    .
  86. .
  87. .
  88. .
  89. .
  90. ^ "Compostable.info".
  91. ^ "ASTM D6002 - 96(2002)e1 Standard Guide for Assessing the Compostability of Environmentally Degradable Plastics (Withdrawn 2011)". astm.org. Archived from the original on 2019-12-21. Retrieved 2012-09-05.
  92. ^ "ASTM D6866 - 11 Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis". Astm.org. Retrieved 2011-08-14.
  93. ^ "NNFCC Newsletter – Issue 16. Understanding Bio-based Content — NNFCC". Nnfcc.co.uk. 2010-02-24. Retrieved 2011-08-14.
  94. ^ "Braskem". Braskem. Retrieved 2011-08-14.

Further reading

External links