Blum–Ittah aziridine synthesis

Source: Wikipedia, the free encyclopedia.
Blum–Ittah aziridine synthesis
Named after Jochanan Blum
Ytzhak Ittah
Reaction type Ring forming reaction

The Blum–Ittah aziridine synthesis, also known as the Blum–Ittah-Shahak aziridine synthesis

Mechanism

The oxirane is first converted into a 2-azidoalcohol with the use of an

phosphonimine (formerly called iminophosphorane) intermediate is then attacked by the alcohol, with oxygen forming a bond with the phosphorus atom. Forming a ring intermediate. After a proton transfer, a pair of electrons from the oxygen atom shifts onto the phosphorus atom, and the phosphorus-nitrogen bond breaks, with the electron pair shifting onto the nitrogen atom. The negatively charged nitrogen atom attacks the carbon atom that the oxygen atom is connected to. This gives us our desired aziridine and a trialkylphosphine oxide as a side product.[2][3][4][7][9]

Applications

The Blum-Ittah aziridine synthesis has been used in the synthesis of α-methylserine[5] and 6-Azabicyclo[3.2.1]octanes.[8]

References