Body plan

Source: Wikipedia, the free encyclopedia.
Modern groups of animals can be grouped by the arrangement of their body structures, so are said to possess different body plans.

A body plan, Bauplan (pl. German: Baupläne), or ground plan is a set of morphological features common to many members of a phylum of animals.[1] The vertebrates share one body plan, while invertebrates have many.

This term, usually applied to animals, envisages a "blueprint" encompassing aspects such as

seeks to explain the origins of diverse body plans.

Body plans have historically been considered to have evolved in a flash in the

embryogenesis such as the phenomenon referred to as phylotypic stage
.

History

Among the pioneering

zoologists, Linnaeus identified two body plans outside the vertebrates; Cuvier identified three; and Haeckel had four, as well as the Protista with eight more, for a total of twelve. For comparison, the number of phyla recognised by modern zoologists has risen to 36.[1]

Linnaeus, 1735

In his 1735 book

Cuvier, 1817

Animalia

In his 1817 work, Le Règne Animal, French zoologist

palaeontology[3] to divide the animal kingdom into four body plans. Taking the central nervous system as the main organ system which controlled all the others, such as the circulatory and digestive systems, Cuvier distinguished four body plans or embranchements:[4]

  1. with a brain and a spinal cord (surrounded by skeletal elements)[4]
  2. with organs linked by nerve fibres[4]
  3. with two longitudinal, ventral nerve cords linked by a band with two ganglia below the oesophagus[4]
  4. with a diffuse nervous system, not clearly discernible[4]

Grouping animals with these body plans resulted in four branches:

annelids) and zoophytes or radiata
.

Haeckel, 1866

echinoderms, and (following Cuvier) articulates, molluscs, and vertebrates.[5]

Gould, 1979

Stephen J. Gould explored the idea that the different phyla could be perceived in terms of a Bauplan, illustrating their fixity. However, he later abandoned this idea in favor of punctuated equilibrium.[6]

Origin

20 out of the 36 body plans originated in the

Palaeozoic or beyond.[9]

The current range of body plans is far from exhaustive of the possible patterns for life: the

Ediacaran biota includes body plans that differ from any found in currently living organisms, even though the overall arrangement of unrelated modern taxa is quite similar.[10] Thus the Cambrian explosion appears to have more or less completely replaced the earlier range of body plans.[7]

Genetic basis

Genes, embryos and development together determine the form of an adult organism's body, through the complex switching processes involved in morphogenesis.

Developmental biologists seek to understand how genes control the development of structural features through a cascade of processes in which key genes produce morphogens, chemicals that diffuse through the body to produce a gradient that acts as a position indicator for cells, turning on other genes, some of which in turn produce other morphogens. A key discovery was the existence of groups of homeobox genes, which function as switches responsible for laying down the basic body plan in animals. The homeobox genes are remarkably conserved between species as diverse as the fruit fly and humans, the basic segmented pattern of the worm or fruit fly being the origin of the segmented spine in humans. The field of animal evolutionary developmental biology ('Evo Devo'), which studies the genetics of morphology in detail, is rapidly expanding[11] with many of the developmental genetic cascades, particularly in the fruit fly Drosophila, catalogued in considerable detail.[12]

See also

References

  1. ^ .
  2. ^ Linnaeus, Carolus (1735). Systema naturae, sive regna tria naturae systematice proposita per classes, ordines, genera, & species. Leiden: Haak. pp. 1–12.
  3. .
  4. ^
  5. ^ Haeckel, Ernst. Generelle Morphologie der Organismen : allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. (1866) Berlin
  6. ^ Bowler, Peter J. (2009). Evolution: the History of an Idea. California, p. 364.
  7. ^ a b Erwin, Douglas; Valentine, James; Jablonski, David (1997). "The origin of animal body plans". American Scientist (March–April).
  8. .
  9. .
  10. .
  11. . Retrieved 13 September 2014.
  12. .

External links

Videos