Bone morphogenetic protein 2

Source: Wikipedia, the free encyclopedia.
BMP2
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001200

NM_007553

RefSeq (protein)

NP_001191

NP_031579

Location (UCSC)Chr 20: 6.77 – 6.78 MbChr 2: 133.39 – 133.4 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Bone morphogenetic protein 2 or BMP-2 belongs to the TGF-β superfamily of proteins.[5]

Function

BMP-2 like other

epithelial to mesenchymal transition
.

Like many other proteins from the BMP family, BMP-2 has been demonstrated to potently induce osteoblast differentiation in a variety of cell types.[7]

BMP-2 may be involved in white adipogenesis[8][9] and may have metabolic effects.[8][9]

Interactions

Bone morphogenetic protein 2 has been shown to

interact with BMPR1A.[10][11][12][13]

Clinical use and complications

Bone morphogenetic protein 2 is shown to stimulate the production of bone.

orthopaedic usage in the United States.[16] Implantation of BMP-2 is performed using a variety of biomaterial carriers ("metals, ceramics, polymers, and composites"[17]) and delivery systems ("hydrogel, microsphere, nanoparticles, and fibers"[17]). While used primarily in orthopedic procedures such as spinal fusion,[18][19] BMP-2 has also found its way into the field of dentistry.[20][21][22]

The use of dual tapered threaded fusion cages and recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge obtained and maintained intervertebral spinal fusion, improved clinical outcomes, and reduced pain after anterior lumbar interbody arthrodesis in patients with degenerative lumbar disc disease.[18] As an adjuvant to allograft bone or as a replacement for harvested autograft, bone morphogenetic proteins (BMPs) appear to improve fusion rates after spinal arthrodesis in both animal models and humans, while reducing the donor-site morbidity previously associated with such procedures.[19]

A study published in 2011 noted "reports of frequent and occasionally catastrophic complications associated with use of [BMP-2] in spinal fusion surgeries", with a level of risk far in excess of estimates reported in earlier studies.[23][24] An additional review by Agrawal and Sinha of BMP-2 and its common delivery systems in early 2016 showed how "problems like ectopic growth, lesser protein delivery, [and] inactivation of the protein" reveal a further need "to modify the available carrier systems as well as explore other biomaterials with desired properties."[17]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000125845Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000027358Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 2376592
    .
  6. .
  7. .
  8. ^ .
  9. ^ .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. ^ .
  18. ^ .
  19. ^ .
  20. .
  21. .
  22. .
  23. ^ Richter R (2011-06-28). "Medtronic's spinal fusion product shown to be harmful in bold review by medical journal and its Stanford editors". Inside Stanford Medicine. Stanford School of Medicine. Archived from the original on 2012-04-23. Retrieved 2012-06-25.
  24. PMID 21729796. Archived from the original
    (PDF) on 2011-11-10.

Further reading

External links