Boolean hierarchy

Source: Wikipedia, the free encyclopedia.

The boolean hierarchy is the

NP sets. Equivalently, the boolean hierarchy can be described as the class of boolean circuits over NP predicates. A collapse of the boolean hierarchy would imply a collapse of the polynomial hierarchy.[1]

Formal definition

BH is defined as follows:[2]

  • BH1 is
    NP
    .
  • BH2k is the class of languages which are the
    coNP
    .
  • BH2k+1 is the class of languages which are the
    NP
    .
  • BH is the union of all the BHi classes.

Derived classes

  • DP (Difference Polynomial Time) is BH2.[3]

Equivalent definitions

Defining the conjunction and the disjunction of classes as follows allows for more compact definitions. The conjunction of two classes contains the languages that are the intersection of a language of the first class and a language of the second class. Disjunction is defined in a similar way with the union in place of the intersection.

  • C ∧ D = { A ∩ B | A ∈ C   B ∈ D }
  • C ∨ D = { A ∪ B | A ∈ C   B ∈ D }

According to this definition, DP = NP ∧ coNP. The other classes of the Boolean hierarchy can be defined as follows.

The following equalities can be used as alternative definitions of the classes of the Boolean hierarchy:[4]

Alternatively,[5] for every k ≥ 3:

Hardness

Hardness for classes of the Boolean hierarchy can be proved by showing a reduction from a number of instances of an arbitrary

NP-complete problem A. In particular, given a sequence {x1, ... xm} of instances of A such that xi ∈ A implies xi-1 ∈ A, a reduction is required that produces an instance y such that y ∈ B if and only if the number of xi ∈ A is odd or even:[4]

  • BH2k-hardness is proved if and the number of xi ∈ A is odd
  • BH2k+1-hardness is proved if and the number of xi ∈ A is even

Such reductions work for every fixed k. If such reductions exist for arbitrary k, the problem is hard for PNP[O(log n)].

References