Bronchoscopy

Source: Wikipedia, the free encyclopedia.
Bronchoscopy
A physician performing bronchoscopy.
ICD-9-CM33.21-33.23
MeSHD001999
OPS-301 code1-62
MedlinePlus003857

Bronchoscopy is an

tumors, or inflammation. Specimens may be taken from inside the lungs
. The construction of bronchoscopes ranges from rigid metal tubes with attached lighting devices to flexible optical fiber instruments with realtime video equipment.

History

The German

laryngologist Gustav Killian is attributed with performing the first bronchoscopy in 1876.[1] Killian used a rigid bronchoscope to remove a pork bone. The procedure was done in an awake patient using topical cocaine as a local anesthetic.[2]
From this time until the 1970s, rigid bronchoscopes were used exclusively.

mainstem bronchi.[3] The British laryngologist Victor Negus
, who worked with Jackson, improved the design of his endoscopes, including what came to be called the "Negus bronchoscope".

video chip located at their distal end.[5]

Types

Rigid

Rigid bronchoscopy.

The rigid bronchoscope is a hollow metal tube used for inspecting the lower airway.[6] It can be for either diagnostic or therapeutic reasons. Modern use is almost exclusively for therapeutic indications. Rigid bronchoscopy is used for retrieving foreign objects.[7] Rigid bronchoscopy is useful for recovering inhaled foreign bodies because it allows for protection of the airway and controlling the foreign body during recovery.[8]

Massive

electrocautery
to help control the bleeding.

Flexible (fiberoptic)

A flexible bronchoscope is longer and thinner than a rigid bronchoscope. It contains a fiberoptic system that transmits an image from the tip of the instrument to an

segmental bronchi. Most flexible bronchoscopes also include a channel for suctioning
or instrumentation, but these are significantly smaller than those in a rigid bronchoscope.

Flexible bronchoscopy causes less discomfort for the patient than rigid bronchoscopy, and the procedure can be performed easily and safely under moderate sedation. It is the technique of choice nowadays for most bronchoscopic procedures.

Indications

Flexible bronchoscopy plays an important role in the diagnosis, monitoring and therapy of certain pulmonary diseases.[9]

Diagnostic

Diagram of a bronchoscopy being performed

Therapeutic

Interventional bronchoscopy in chronic obstructive airway inflammatory diseases including

COPD has greatly evolved and show promising results for the clinical management of patients.[10]

Procedure

Video of a bronchoscopy of the right bronchial tree

Bronchoscopy can be performed in a special room designated for such procedures,

ECG monitoring of the heart, and pulse oximetry
.

A flexible bronchoscope is inserted with the patient in a sitting or supine position. Once the bronchoscope is inserted into the upper airway, the vocal cords are inspected. The instrument is advanced to the trachea and further down into the bronchial system and each area is inspected as the bronchoscope passes. If an abnormality is discovered, it may be sampled using a brush, a needle, or forceps. Specimen of lung tissue (transbronchial biopsy) may be sampled using a real-time X-ray (fluoroscopy) or an electromagnetic tracking system.[11] Flexible bronchoscopy can also be performed on intubated patients, such as patients in intensive care. In this case, the instrument is inserted through an adapter connected to the tracheal tube.

Rigid bronchoscopy is performed under general anesthesia. Rigid bronchoscopes are too large to allow parallel placement of other devices in the trachea; therefore the anesthesia apparatus is connected to the bronchoscope and the patient is ventilated through the bronchoscope.

Recovery

Although most patients tolerate bronchoscopy well, a brief period of observation is required after the procedure. Most complications occur early and are readily apparent at the time of the procedure. The patient is assessed for respiratory difficulty (

respiratory distress
occurs.

Complications and risks

Besides the risks associated with the drugs used, there are also specific risks of the procedure. Although a rigid bronchoscope can scratch or tear

airways or damage the vocal cords, the risk of bronchoscopy is limited. Complications from fiberoptic bronchoscopy are rare and the risks are minimized with careful technique and an ongoing dialogue with the anesthesiologist.[9]
Common complications include excessive bleeding following biopsy. A lung biopsy also may cause leakage of air, called pneumothorax. Pneumothorax occurs in less than 1% of lung biopsy cases. Laryngospasm is a rare complication but may sometimes require tracheal intubation. Patients with tumors or significant bleeding may experience increased difficulty breathing after a bronchoscopic procedure, sometimes due to swelling of the mucous membranes of the airways.

See also

References

  1. PMID 25965540
    .
  2. ^ Kollofrath O. Entfernung Eines Knochenstucks Aus Dem Rechten Bronchus Auf Naturlichem Wege Und Unter Anwendung Der Directen Laryngoskopie. Munch Med Wochenschr 1897;38:1038-1039.
  3. ^ "Tracheo-bronchoscopy, esophagoscopy, and gastroscopy". St. Louis, Laryngoscope. 1907.
  4. PMID 5352887
    .
  5. ^ Kobayashi T, Koshiishi H, Kawate N, A dela Cruz CM, Kato H (1994). "The Performance of Prototype Videobronchoscopes: The Pentax Eb-Tm1830 and Eb-Tm1530". Journal of Bronchology & Interventional Pulmonology. 1 (2): 160–167.
  6. PMID 28149583
    .
  7. . Retrieved 30 May 2010.
  8. ^ Rosbe KW, Burke K (2012). "Chapter 39. Foreign Bodies". In Lalwani A (ed.). CURRENT Diagnosis & Treatment in Otolaryngology—Head & Neck Surgery (3rd ed.). New York, NY: The McGraw-Hill Companies. Retrieved July 16, 2012.
  9. ^
    PMID 22472222
    .
  10. .
  11. .

External links