CCL5

Source: Wikipedia, the free encyclopedia.
CCL5
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_002985
NM_001278736

NM_013653

RefSeq (protein)

NP_001265665
NP_002976

NP_038681

Location (UCSC)Chr 17: 35.87 – 35.88 MbChr 11: 83.42 – 83.42 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Chemokine (C-C motif) ligand 5 (also CCL5) is a protein which in humans is encoded by the CCL5 gene.[5] The gene has been discovered in 1990 by in situ hybridisation and it is localised on 17q11.2-q12 chromosome.[6] It is also known as RANTES (regulated on activation, normal T cell expressed and secreted). RANTES was first described by Dr. Tom Schall who named the protein, the original source of the name Rantes was from the Argentine movie Man Facing Southeast about an alien who shows up in a mental ward who was named Rantés, the rather clunky acronym was only made to fit the name.[7]

Function

CCL5 belongs to the CC subfamily of

NK cells to form CHAK (CC-Chemokine-activated killer) cells.[9] It is also an HIV-suppressive factor released from CD8+ T cells [10]

The chemokine CCL5 is mainly expressed by T-cells and monocytes,

Beta-catenin is phosphorylated and degraded. An important protein in the cell cycle, Cyclin D, is inhibited by inactivated GSK-3.[11]

CCL5 was first identified in a search for genes expressed "late" (3–5 days) after

SP1 transcription factor binds near to CCL5 gene and mediates its constitutive mRNA transcription. The transcription factor is regulated by the JNK/MAPK pathway.[17] Memory CD8+ T-cells are able to secrete CCL5 immediately after TCR stimulation, because they have a large number of preformed CCL5 mRNA in cytoplasm and its secretion is dependent only on translation.[18]

RANTES, along with the related chemokines MIP-1alpha and MIP-1beta, has been identified as a natural HIV-suppressive factor secreted by activated CD8+ T cells and other immune cells.[10] The RANTES protein has been engineered for in vivo production by Lactobacillus bacteria, and this solution is being developed into a possible HIV entry-inhibiting topical microbicide.[19]

Interactions

CCL5 has been shown to

CCL5 also activates the G-protein coupled receptor GPR75.[25]

CCL5 has two mechanisms of action according to its concentration.

  • The first one occurs at low concentration of the chemokine. CCL5 may act as a
    dimer
    . Dimerization is not necessary for binding to CCR5. Thus, CCL5 in nanomolar concentration acts as classical chemokine and binds to its receptor. For the acting as classical chemokine and for the dimerization, N terminus of the molecule is important.
  • The second one occurs at high concentration of the chemokine. CCL5 creates self-aggregates binding to glycosaminoglycans (GAGs) on the cell surface. For that, Glu66 and Glu26 are important. These amino acids are presented on the protein surface and allows ion interactions. In the experiment where these molecules were exchanged for serine, the self-aggregation did not occur.[26] In vitro, the self-aggregates are strong activators of leukocytes. They can act as mitogens and they are not dependent on binding to the receptor. Activated T-cells (or other cells, for instance monocytes or neutrophils) either proliferate or perform apoptosis, and they release proinflammatory cytokines, such as IL-2, IL-5 and IFN-γ.[8] CCL5 mediated apoptosis in T-cells includes release of cytochrome c in cytoplasm and the activation of caspase-9 and caspase-3. The apoptosis is dependent on GAGs binding on cell surface and there is a requirement of at least 4 CCL5 molecules to induce the apoptosis.[27]

Clinical significance

CCL5 is involved in

tumor development [28] and numerous human diseases and disorders, for instance viral hepatitis or COVID-19.[6][11]

For instance, CCL5 level is higher during rejection of

Importance of CCL5 is proved by various microbial strategies to avoid the activity of chemokine. For instance,

knock-out mice, virus-specific CD8+ T cells had reduced cytotoxic ability, reduced cytokines production and enhanced production of inhibitory molecules. It underscores the importance of CCL5 during chronic viral infection.[29]

Increased levels of CCL5 was discovered in lots of cancers. For instance in breast cancer,[28] hepatocellular carcinoma,[6] stomach cancer, prostate cancer and pancreatic cancer.[11]

CCL5 plays an important role in various human disorders, such as atherosclerosis, COVID-19, SARS,[11] atopic dermatitis, asthma, glomerulonephritis,[8] alcohol liver disease, acute liver failure and viral hepatitis.[6]

See also

References

  1. ^ a b c ENSG00000274233 GRCh38: Ensembl release 89: ENSG00000271503, ENSG00000274233Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000035042Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 1691736
    .
  6. ^ .
  7. ^ Cohen P (14 December 1996). "Hooked on HIV - What's the connection between a 1980s film character and the cutting edge of AIDS research? Philip Cohen reports on a protein that's unlocking HIV's mysteries". Copyright New Scientist Ltd.
  8. ^
    PMID 11286708
    .
  9. .
  10. ^ .
  11. ^ .
  12. ^ .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. PMID 20479208.*Lay summary in: American Society for Microbiology (July 24, 2010). "Microbicide containing engineered bacteria may inhibit HIV-1"
    . Science Daily.
  20. .
  21. ^ .
  22. .
  23. ^ .
  24. .
  25. .
  26. .
  27. .
  28. ^ .
  29. .

External links

Further reading

This page is based on the copyrighted Wikipedia article: CCL5. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy