CDX2

Source: Wikipedia, the free encyclopedia.
CDX2
Identifiers
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001265
NM_001354700

NM_007673

RefSeq (protein)

NP_001256
NP_001341629

NP_031699

Location (UCSC)Chr 13: 27.96 – 27.97 MbChr 5: 147.24 – 147.24 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Homeobox protein CDX-2 is a

caudal
-related genes in the human genome.

Function

In common with the two other Cdx genes, CDX2 regulates several essential processes in the development and function of the lower

embryonic development, CDX2 becomes active in endodermal cells that are posterior to the developing stomach.[6] These cells eventually form the intestinal epithelium. The activity of CDX2 at this stage is essential for the correct formation of the intestine and the anus.[8][9] CDX2 is also required for the development of the placenta.[9]

Later in development, CDX2 is expressed in intestinal epithelial stem cells, which are cells that continuously differentiate into the cells that form the intestinal lining. This differentiation is dependent on CDX2,[10][11] as illustrated by experiments where the expression of this gene was knocked-out or overexpressed in mice. Heterozygous CDX2 knock-outs have intestinal lesions caused by the differentiation of intestinal cells into gastric epithelium; this can be considered a form of homeotic transformation.[12] Conversely, the over-expression of CDX2 leads to the formation of intestinal epithelium in the stomach.[13]

In addition to roles in endoderm, CDX2 is also expressed in very early stages of mouse and human embryonic development, specifically marking the

trophectoderm lineage of cells in the blastocyst of mouse and human. Trophectoderm cells contribute to the placenta.[9]

Pathology

Ectopic expression of CDX2 was reported in more than 85% of the human patients with

bile acids are able to induce the expression of an intestinal differentiation program through up-regulation of NF-κB and CDX2.[16]

Biomarker for intestinal cancer

CDX2 is also used in diagnostic surgical pathology as a marker for gastrointestinal differentiation, especially colorectal.[17]

Possible use in stem cell research

This gene (or, more specifically, the equivalent gene in humans) has come up in the proposal by the President's Council on Bioethics, as a solution to the stem cell controversy.[18] According to one of the plans put forth, by deactivating the gene, it would not be possible for a properly organized embryo to form, thus providing stem cells without requiring the destruction of an embryo.[19] Other genes that have been proposed for this purpose include Hnf4, which is required for gastrulation.[18][20]

Interactions

CDX2 has been shown to

interact with EP300,[21] and PAX6.[21]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000165556Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000029646Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 7698771
    .
  6. ^ .
  7. .
  8. .
  9. ^ .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. ^ a b Hurlbut WB (2004). "Altered Nuclear Transfer as a Morally Acceptable Means for the Procurement of Human Embryonic Stem Cells". The President's Council on Bioethics. The White House of the United States of America. Archived from the original on May 17, 2008. Retrieved 2008-07-16.
  19. ^ Saletan W (2004-12-06). "The creepy solution to the stem-cell debate". Slate. Archived from the original on February 14, 2007. Retrieved 2008-07-16.
  20. S2CID 26102470
    .
  21. ^ .

Further reading

External links

This page is based on the copyrighted Wikipedia article: CDX2. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy