Cytotoxic T-lymphocyte associated protein 4

Source: Wikipedia, the free encyclopedia.
(Redirected from
CTLA4
)
CTLA4
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001037631
NM_005214

NM_001281976
NM_009843

RefSeq (protein)

NP_001032720
NP_005205

NP_001268905
NP_033973

Location (UCSC)Chr 2: 203.85 – 203.87 MbChr 1: 60.93 – 60.95 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Cytotoxic T-lymphocyte associated protein 4, (CTLA-4) also known as CD152 (

protein receptor that functions as an immune checkpoint and downregulates immune responses. CTLA-4 is constitutively expressed in regulatory T cells but only upregulated in conventional T cells after activation – a phenomenon which is particularly notable in cancers.[5] It acts as an "off" switch when bound to CD80 or CD86 on the surface of antigen-presenting cells. It is encoded by the gene
CTLA4 in humans.

The CTLA-4 protein is encoded by the Ctla-4 gene in mice.[6][7]

History

CTLA-4 was first identified in 1991 as a second receptor for the T cell costimulation ligand B7.[8] In November 1995, the labs of Tak Wah Mak and Arlene Sharpe independently published their findings on the discovery of the function of CTLA-4 as a negative regulator of T-cell activation, by knocking out the gene in mice.[9][10] Previous studies from several labs had used methods which could not definitively define the function of CTLA-4, and were contradictory.[11]

Function

CTLA-4 is a member of the

T cell receptor
and CD28 leads to increased expression of CTLA-4.

The mechanism by which CTLA-4 acts in T cells remains somewhat controversial. Biochemical evidence suggested that CTLA-4 recruits a phosphatase to the T cell receptor (TCR), thus attenuating the signal.[17] This work remains unconfirmed in the literature since its first publication. More recent work has suggested that CTLA-4 may function in vivo by capturing and removing CD80 and CD86 from the membranes of antigen-presenting cells, thus making these unavailable for triggering of CD28.[18]

In addition to that, it has been found that dendritic cell (DC) - Treg interaction causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation and skews Fascin-1–dependent actin polarization in antigen presenting DCs toward the Treg cell adhesion zone. Although it is reversible upon T regulatory cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. This suggests Treg-mediated immune suppression is a multi-step process. In addition to CTLA-4 CD80/CD86 interaction, fascin-dependent polarization of the cytoskeleton towards DC-Treg immune synapse may play a pivotal role.[19]

CTLA-4 may also function via modulation of cell motility and/or signaling through PI3 kinase[20] Early multiphoton microscopy studies observing T-cell motility in intact lymph nodes appeared to give evidence for the so-called ‘reverse-stop signaling model’.[21] In this model CTLA-4 reverses the TCR-induced ‘stop signal’ needed for firm contact between T cells and antigen-presenting cells (APCs).[22] However, those studies compared CTLA-4 positive cells, which are predominantly regulatory cells and are at least partially activated, with CTLA-4 negative naive T cells. The disparity of these cells in multiple regards may explain some of these results. Other groups who have analyzed the effect of antibodies to CTLA-4 in vivo have concluded little or no effect upon motility in the context of anergic T-cells.[23] Antibodies to CTLA-4 may exert additional effects when used in vivo, by binding and thereby depleting regulatory T cells.[24]

Structure

The protein contains an

PI3K
, although the importance and results of this interaction are uncertain.

Clinical significance

Variants in this gene have been associated with

primary biliary cirrhosis and other autoimmune diseases
.

Polymorphisms of the CTLA-4 gene are associated with autoimmune diseases such as rheumatoid arthritis,[25] autoimmune thyroid disease and multiple sclerosis, though this association is often weak. In systemic lupus erythematosus (SLE), the splice variant sCTLA-4 is found to be aberrantly produced and found in the serum of patients with active SLE.

Germline haploinsufficiency

NIH Clinical Center at the National Institutes of Health, and their collaborators in 2014.[26] In the same year a collaboration between the groups of Dr. Bodo Grimbacher, Dr. Shimon Sakaguchi, Dr. Lucy Walker and Dr. David Sansom and their collaborators described a similar phenotype.[27]

CTLA-4 mutations are inherited in an

autosomal dominant manner. This means a person only needs one abnormal gene from one parent. The one normal copy is not enough to compensate for the one abnormal copy. Dominant inheritance means most families with CTLA-4 mutations have affected relatives in each generation on the side of the family with the mutation
.

Clinical and laboratory manifestations

Symptomatic patients with CTLA-4 mutations are characterized by an immune dysregulation syndrome including extensive T cell infiltration in a number of organs, including the gut, lungs, bone marrow, central nervous system.[28][29] and kidneys. Most patients have diarrhea or enteropathy. Lymphadenopathy and hepatosplenomegaly are also common, as is autoimmunity. The organs affected by autoimmunity vary but include thrombocytopenia, hemolytic anemia, thyroiditis, type I diabetes, psoriasis, and arthritis. Respiratory infections are also common. Importantly, the clinical presentations and disease courses are variable with some individuals severely affected, whereas others show little manifestation of disease. This “variable expressivity,” even within the same family, can be striking and may be explained by differences in lifestyle, exposure to pathogens, treatment efficacy, or other genetic modifiers.[26][27][30][31] This condition is described to have incomplete penetrance of disease. Penetrance is said to be incomplete when some individuals fail to express the trait and seem completely asymptomatic, even though they carry the allele. The penetrance is estimated to be about 60%.

The clinical symptoms are caused by abnormalities of the immune system. Most patients develop reduced levels of at least one

memory B cells, and progressive loss of circulating B cells.[26][27][31]

Treatment

Once a diagnosis is made, the treatment is based on an individual’s clinical condition and may include standard management for autoimmunity and immunoglobulin deficiencies. A study reported in 2016 treated a Korean CHAI disease patient with abatacept, which is a fusion protein of CTLA-4 and an antibody, and was able to control immune activity and improve patient symptoms. Regular administration of abatacept improved the patient’s severe anemia and diarrhea (3L/day) and brought 3-year-long hospitalization to an end.[31]

Agonists to reduce immune activity

The comparatively higher binding affinity of CTLA-4 than that of CD28 has made CTLA-4 a potential therapy for

autoimmune diseases. Fusion proteins of CTLA-4 and antibodies (CTLA4-Ig) have been used in clinical trials for rheumatoid arthritis.[32] The fusion protein CTLA4-Ig is commercially available as Orencia (abatacept). A second generation form of CTLA4-Ig known as belatacept was recently approved by the FDA based on favorable results from the randomized Phase III BENEFIT (Belatacept Evaluation of Nephroprotection and Efficacy as First Line Immunosuppression Trial) study. It was approved for renal transplantation in patients that are sensitized to Epstein–Barr virus
(EBV).

Antagonists to increase immune activity

Conversely, there is increasing interest in the possible therapeutic benefits of blocking CTLA-4 (using antagonistic antibodies against CTLA such as

The 2018 Nobel Prize in Physiology or Medicine was awarded to James P. Allison and Tasuku Honjo "for their discovery of cancer therapy by inhibition of negative immune regulation".[34]

Interactions

CTLA-4 has been shown to

interact
with:

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000163599Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000026011Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^
    PMID 29208439
    .
  6. .
  7. .
  8. .
  9. ^ .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. ^ .
  27. ^ .
  28. .
  29. .
  30. .
  31. ^ .
  32. .
  33. .
  34. ^ "The Nobel Prize in Physiology or Medicine 2018". NobelPrize.org. Retrieved 3 July 2023.
  35. PMID 11583591
    .
  36. .
  37. .
  38. .
  39. .

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This page is based on the copyrighted Wikipedia article: CTLA4. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy