Calcium-dependent chloride channel

Source: Wikipedia, the free encyclopedia.
(Redirected from
Calcium-activated chloride channel
)

TMEM16
TCDB
1.A.17
OPM superfamily369
Membranome219
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

The Calcium-Dependent Chloride Channel (Ca-ClC) proteins (or calcium-activated chloride channels (CaCCs),

suppressors.[8] These eukaryotic proteins are "required for normal electrolyte and fluid secretion, olfactory perception, and neuronal and smooth muscle excitability" in animals.[9][10]
Members of the Ca-CIC family are generally 600 to 1000 amino acyl residues (aas) in length and exhibit 7 to 10 transmembrane segments (TMSs).

Function

Tmc1 and Tmc2 (TC#s 1.A.17.4.6 and 1.A.17.4.1, respectively) may play a role in hearing and are required for normal function of cochlear hair cells, possibly as Ca2+ channels or Ca2+ channel subunits (see also family TC# 1.A.82).[11] Mice lacking both channels lack hair cell mechanosensory potentials.[12] There are 8 members of this family in humans, 1 in Drosophila and 2 in C. elegans. One of the latter two is expressed in mechanoreceptors.[13] Tmc1 is a sodium-sensitive cation channel required for salt (Na+) chemosensation in C. elegans "where it is required for salt-evoked neuronal activity and behavioural avoidance of high concentrations of NaCl".[14]

TMEM16A is over-expressed in several tumor types. The role of TMEM16A in gliomas and the potential underlying mechanisms were analyzed by Liu et al. 2014. Knockdown of TMEM16A suppressed cell proliferation, migration and invasion.[15]

The reactions believed to be catalyzed by channels of the Ca-ClC family are:[16]

Cl (out) ⇌ Cl (in)

and

Cations (e.g., Ca2+) (out) ⇌ Cations (e.g., Ca2+) (in)

In humans

CaCCs that are known to occur in humans include:

See also

Notes

  1. ^ The anoctamins are only expressed in eukaryotes, with 10 members in vertebrates.[7] Although all anoctamins are calcium-activated, not all members of this family are ion channels like ANO1; some are phospholipid scramblases.[7] ANO1 was the first anoctamin discovered, with three research groups independently identifying it in 2008.[7] A single protein homologue to the vertebrate anoctamins has been found in fungi and yeast, Aspergillus fumigatus and Saccharomyces cerevisiae, respsectively.[7]

References

Further reading

As of this edit, this article uses content from "1.A.13 The Epithelial Chloride Channel (E-ClC) Family", which is licensed in a way that permits reuse under the

Creative Commons Attribution-ShareAlike 3.0 Unported License, but not under the GFDL
. All relevant terms must be followed.