Calpain

Source: Wikipedia, the free encyclopedia.
Calpain
SCOP2
1mdw / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB1tl9​ A:55-354; 1kxr​ B:55-354; 1tlo​ A:55-354; 2ary​ B:55-354; 1zcm​ A:55-353; 1mdw​ B:45-344; 1u5i​ A:45-344; 1kfx​ L:45-344; 1kfu​ L:45-344; 1ziv​ A:42-337
calpain-1
Identifiers
ExPASy
NiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins
calpain-2
Identifiers
ExPASy
NiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins

A calpain (

CAPNS1, also known as CAPN4, and the endogenous calpain-specific inhibitor, calpastatin
.

Discovery

The history of calpain's discovery originates in 1964, when calcium-dependent proteolytic activities caused by a "calcium-activated neutral protease" (CANP) were detected in

millimolar concentrations of Ca2+ within the cell, respectively.[3]

To date, these two isoforms remain the best characterised members of the calpain family. Structurally, these two

CAPN2
genes, respectively).

Cleavage specificity

No specific

hydrophobic amino acids (e.g. leucine, valine and isoleucine) at the P2 position, and large hydrophobic amino acids (e.g. phenylalanine and tyrosine) at the P1 position.[4] Arguably, the best currently available fluorogenic calpain substrate is (EDANS)-Glu-Pro-Leu-Phe=Ala-Glu-Arg-Lys-(DABCYL
), with cleavage occurring at the Phe=Ala bond.

Extended family

The Human Genome Project has revealed that more than a dozen other calpain

splice variants.[5][6][7] As the first calpain whose three-dimensional structure was determined, m-calpain is the type-protease for the C2 (calpain) family in the MEROPS
database.

Gene Protein Aliases Tissue expression Disease linkage
CAPN1
Calpain 1 Calpain-1 large subunit, Calpain mu-type ubiquitous
CAPN2
Calpain 2 Calpain-2 large subunit, Calpain m-type ubiquitous
CAPN3
Calpain 3 skeletal muscle retina and lens specific Limb Girdle muscular dystrophy 2A
CAPN5 Calpain 5 ubiquitous (high in colon, small intestine and testis) might be linked to necrosis,
as it is an ortholog of the C. elegans necrosis gene tra-3
CAPN6
Calpain 6 CAPNX, Calpamodulin
CAPN7 Calpain 7 palBH ubiquitous
CAPN8
Calpain 8 exclusive to stomach mucosa and the GI tract might be linked to colon polyp formation
CAPN9
Calpain 9 exclusive to stomach mucosa and the GI tract might be linked to colon polyp formation
CAPN10 Calpain 10 susceptibility gene for type II diabetes
CAPN11 Calpain 11 testis
CAPN12 Calpain 12 ubiquitous but high in hair follicle
CAPN13 Calpain 13 testis and lung
CAPN14 Calpain 14 ubiquitous
CAPN17 Calpain 17 Fish and amphibian-only
SOLH Calpain 15 Sol H (homolog of the drosophila gene sol)
CAPNS1
Calpain small subunit 1 Calpain 4
CAPNS2 Calpain small subunit 2

Function

Although the physiological role of calpains is still poorly understood, they have been shown to be active participants in processes such as

clotting and the diameter of blood vessels, and playing a role in memory. Calpains have been implicated in apoptotic cell death, and appear to be an essential component of necrosis. Detergent fractionation revealed the cytosolic localization of calpain.[8]

Enhanced calpain activity, regulated by CAPNS1, significantly contributes to platelet hyperreactivity under hypoxic environment.[10]

In the brain, while μ-calpain is mainly located in the

glial cells, m-calpain is found in glia and a small number in axons.[11] Calpain is also involved in skeletal muscle protein breakdown due to exercise and altered nutritional states.[12]

Clinical significance

Pathology

The structural and functional diversity of calpains in the cell is reflected in their involvement in the pathogenesis of a wide range of disorders. At least two well known genetic disorders and one form of cancer have been linked to tissue-specific calpains. When defective, the mammalian calpain 3 (also known as p94) is the gene product responsible for limb-girdle muscular dystrophy type 2A,

plasma membrane. Calpain may also break down sodium channels that have been damaged due to axonal stretch injury,[18] leading to an influx of sodium into the cell. This, in turn, leads to the neuron's depolarization and the influx of more Ca2+. A significant consequence of calpain activation is the development of cardiac contractile dysfunction that follows ischemic insult to the heart. Upon reperfusion of the ischemic myocardium, there is development of calcium overload or excess in the heart cell (cardiomyocytes). This increase in calcium leads to activation of calpain.[19][irrelevant citation
] Recently calpain has been implicated in promoting high altitude induced venous thrombosis by mediating platelet hyperactivation.[10]

Therapeutic inhibitors

The exogenous regulation of calpain activity is therefore of interest for the development of therapeutics in a wide array of pathological states. As a few of the many examples supporting the therapeutic potential of calpain inhibition in ischemia, calpain inhibitor AK275 protected against focal ischemic brain damage in rats when administered after ischemia, and MDL28170 significantly reduced the size of damaged infarct tissue in a rat focal ischemia model. Also, calpain inhibitors are known to have neuroprotective effects: PD150606,[20] SJA6017,[21] ABT-705253,[22][23] and SNJ-1945.[24]

Calpain may be released in the brain for up to a month after a head injury, and may be responsible for a shrinkage of the brain sometimes found after such injuries.[25] However, calpain may also be involved in a "resculpting" process that helps repair damage after injury.[25]

See also

References

  1. ^ "the definition of calpain". Dictionary.com. Retrieved 23 April 2018.
  2. S2CID 4359635
    .
  3. .
  4. .
  5. ^ Thompson V (2002-02-12). "Calpain Nomenclature". College of Agriculture and Life Sciences at the University of Arizona. Retrieved 2010-08-06.
  6. PMID 11516996
    .
  7. .
  8. ^ .
  9. .
  10. ^ .
  11. ^ .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. ^ a b White V (1999-10-21). "– 'Biochemical Storm' Following Brain Trauma An Important Factor In Treatment, University of Florida Researcher Finds". University of Florida News. Archived from the original on 2011-06-23. Retrieved 2010-08-07.

Further reading

External links