Centaur (small Solar System body)

Source: Wikipedia, the free encyclopedia.
Positions of known outer Solar System objects.
The centaurs orbit generally inwards of the Kuiper belt and outside the Jupiter trojans.
  Sun
  Jupiter trojans (6,178)
  Scattered disc (>300)   Neptune trojans (9)
  Giant planets:
 · Jupiter (J) · Saturn (S)
 · Uranus (U) · Neptune (N)

  Centaurs (44,000)
  Kuiper belt (>100,000)
(scale in AU; epoch as of January 2015; # of objects in parentheses)

In

planetary astronomy, a centaur is a small Solar System body that orbits the Sun between Jupiter and Neptune and crosses the orbits of one or more of the giant planets. Centaurs generally have unstable orbits because they cross or have crossed the orbits of the giant planets; almost all their orbits have dynamic lifetimes of only a few million years,[1]
but there is one known centaur, 514107 Kaʻepaokaʻawela, which may be in a stable (though retrograde) orbit.[2][note 1] Centaurs typically exhibit the characteristics of both asteroids and comets. They are named after the mythological centaurs that were a mixture of horse and human. Observational bias toward large objects makes determination of the total centaur population difficult. Estimates for the number of centaurs in the Solar System more than 1 km in diameter range from as low as 44,000[1] to more than 10,000,000.[4][5]

The first centaur to be discovered, under the definition of the

main-belt asteroid, and is known to have a system of rings
. It was discovered in 1997.

No centaur has been photographed up close, although there is evidence that Saturn's moon Phoebe, imaged by the Cassini probe in 2004, may be a captured centaur that originated in the Kuiper belt.[6] In addition, the Hubble Space Telescope has gleaned some information about the surface features of 8405 Asbolus.

Ceres may have originated in the region of the outer planets,[7] and if so might be considered an ex-centaur, but the centaurs seen today all originated elsewhere.

Of the objects known to occupy centaur-like orbits, approximately 30 have been found to display comet-like dust

comas. Any centaur that is perturbed
close enough to the Sun is expected to become a comet.

Classification

A centaur has either a

outer planets (between Jupiter and Neptune). Due to the inherent long-term instability of orbits in this region, even centaurs such as 2000 GM137 and 2001 XZ255, which do not currently cross the orbit of any planet, are in gradually changing orbits that will be perturbed until they start to cross the orbit of one or more of the giant planets.[1]
Some astronomers count only bodies with semimajor axes in the region of the outer planets to be centaurs; others accept any body with a perihelion in the region, as their orbits are similarly unstable.

Discrepant criteria

However, different institutions have different criteria for classifying borderline objects, based on particular values of their orbital elements:

  • The
    perihelion beyond the orbit of Jupiter (5.2 AU < q) and a semi-major axis less than that of Neptune (a < 30.1 AU).[9] Though nowadays the MPC often lists centaurs and scattered disc
    objects together as a single group.
  • The Jet Propulsion Laboratory (JPL) similarly defines centaurs as having a semi-major axis, a, between those of Jupiter and Neptune (5.5 AU ≤ a ≤ 30.1 AU).[10]
  • In contrast, the Deep Ecliptic Survey (DES) defines centaurs using a dynamical classification scheme. These classifications are based on the simulated change in behavior of the present orbit when extended over 10 million years. The DES defines centaurs as non-resonant objects whose instantaneous (osculating) perihelia are less than the osculating semi-major axis of Neptune at any time during the simulation. This definition is intended to be synonymous with planet-crossing orbits and to suggest comparatively short lifetimes in the current orbit.[11]
  • The collection The Solar System Beyond Neptune (2008) defines objects with a semi-major axis between those of Jupiter and Neptune and a Jupiter-relative
    Jupiter-family comets, and classifying those objects on unstable orbits with a semi-major axis larger than Neptune's as members of the scattered disc.[12]
  • Other astronomers prefer to define centaurs as objects that are non-resonant with a perihelion inside the orbit of Neptune that can be shown to likely cross the Hill sphere of a gas giant within the next 10 million years,[13] so that centaurs can be thought of as objects scattered inwards and that interact more strongly and scatter more quickly than typical scattered-disc objects.
  • The JPL Small-Body Database lists 452 centaurs.[14] There are an additional 116 trans-Neptunian objects (objects with a semi-major axis further than Neptune's, i.e. 30.1 AU ≤ a) with a perihelion closer than the orbit of Uranus (q ≤ 19.2 AU).[15]

Ambiguous objects

The Gladman & Marsden (2008)

Schwassmann-Wachmann 1
(q = 5.72 AU; TJ = 2.99) has been categorized as both a centaur and a Jupiter-family comet depending on the definition used.

Other objects caught between these differences in classification methods include (44594) 1999 OX3, which has a semi-major axis of 32 AU but crosses the orbits of both Uranus and Neptune. It is listed as an outer centaur by the Deep Ecliptic Survey (DES). Among the inner centaurs, (434620) 2005 VD, with a perihelion distance very near Jupiter, is listed as a centaur by both JPL and DES.

A recent orbital simulation

29P/Schwassmann-Wachmann, P/2010 TO20 LINEAR-Grauer, P/2008 CL94 Lemmon, and 2016 LN8, but the simulations indicate that there may of order 1000 more objects >1 km in radius that have yet to be detected. Objects in this gateway region can display significant activity[16][17]
and are in an important evolutionary transition state that further blurs the distinction between the centaur and Jupiter-family comet populations.

The

Committee on Small Body Nomenclature of the International Astronomical Union has not formally weighed in on any side of the debate. Instead, it has adopted the following naming convention for such objects: Befitting their centaur-like transitional orbits between TNOs and comets, "objects on unstable, non-resonant, giant-planet-crossing orbits with semimajor axes greater than Neptune's" are to be named for other hybrid and shape-shifting mythical creatures. Thus far, only the binary objects Ceto and Phorcys and Typhon and Echidna have been named according to the new policy.[18]

Centaurs with measured diameters listed as possible dwarf planets according to Mike Brown's website include 10199 Chariklo, (523727) 2014 NW65 and 2060 Chiron.[19]

Orbits

Distribution

Orbits of known centaurs[note 2]

The diagram illustrates the orbits of known centaurs in relation to the orbits of the planets. For selected objects, the

perihelion
to aphelion).

The orbits of centaurs show a wide range of eccentricity, from highly eccentric (

Saturn-crossers Thereus and Okyrhoe
).

To illustrate the range of the orbits' parameters, the diagram shows a few objects with very unusual orbits, plotted in yellow :

  • 1999 XS35 (Apollo asteroid) follows an extremely eccentric orbit (e = 0.947), leading it from inside Earth's orbit (0.94 AU) to well beyond Neptune (> 34 AU)
  • 2007 TB434 follows a quasi-circular orbit (e < 0.026)
  • 2001 XZ255 has the lowest
    inclination
    (i < 3°).
  • 2004 YH32 is one of a small proportion of centaurs with an extreme prograde inclination (i > 60°). It follows such a highly inclined orbit (79°) that, while it crosses from the distance of the asteroid belt from the Sun to past the distance of Saturn, if its orbit is projected onto the plane of Jupiter's orbit, it does not even go out as far as Jupiter.

Over a dozen known centaurs follow retrograde orbits. Their inclinations range from modest (e.g., 160° for Dioretsa) to extreme (i < 120°; e.g. 105° for (342842) 2008 YB3[20]). Seventeen of these high-inclination, retrograde centaurs were controversially claimed to have an interstellar origin.[21][22][23]

Changing orbits

semi-major axis of Asbolus during the next 5500 years, using two slightly different estimates of present-day orbital elements. After the Jupiter encounter of year 4713 the two calculations diverge.[24]

Because the centaurs are not protected by

Jupiter family of short-period comets. 2023 RB
will have its orbit notably changed by a close approach to Saturn in 2201.

Objects may be perturbed from the Kuiper belt, whereupon they become Neptune-crossing and interact gravitationally with that planet (see theories of origin). They then become classed as centaurs, but their orbits are chaotic, evolving relatively rapidly as the centaur makes repeated close approaches to one or more of the outer planets. Some centaurs will evolve into Jupiter-crossing orbits whereupon their perihelia may become reduced into the inner Solar System and they may be reclassified as active comets in the Jupiter family if they display cometary activity. Centaurs will thus ultimately collide with the Sun or a planet or else they may be ejected into interstellar space after a close approach to one of the planets, particularly Jupiter.

Physical characteristics

The relatively small size of centaurs precludes remote observation of surfaces, but

spectra can provide clues about surface composition and insight into the origin of the bodies.[25]

Colours

Colour distribution of centaurs

The colours of centaurs are very diverse, which challenges any simple model of surface composition.[26] In the side-diagram, the colour indices are measures of apparent magnitude of an object through blue (B), visible (V) (i.e. green-yellow) and red (R) filters. The diagram illustrates these differences (in exaggerated colours) for all centaurs with known colour indices. For reference, two moons: Triton and Phoebe, and planet Mars are plotted (yellow labels, size not to scale).

Centaurs appear to be grouped into two classes:

  • very red – for example 5145 Pholus
  • blue (or blue-grey, according to some authors) – for example
    2020 MK4

There are numerous theories to explain this colour difference, but they can be broadly divided into two categories:

  • The colour difference results from a difference in the origin and/or composition of the centaur (see origin below)
  • The colour difference reflects a different level of space-weathering from radiation and/or cometary activity.

As examples of the second category, the reddish colour of Pholus has been explained as a possible mantle of irradiated red organics, whereas Chiron has instead had its ice exposed due to its periodic cometary activity, giving it a blue/grey index. The correlation with activity and color is not certain, however, as the active centaurs span the range of colors from blue (Chiron) to red (166P/NEAT).[27] Alternatively, Pholus may have been only recently expelled from the Kuiper belt, so that surface transformation processes have not yet taken place.

Delsanti et al. suggest multiple competing processes: reddening by the radiation, and blushing by collisions.[28][29]

Spectra

The interpretation of

spectra
is often ambiguous, related to particle sizes and other factors, but the spectra offer an insight into surface composition. As with the colours, the observed spectra can fit a number of models of the surface.

Water ice signatures have been confirmed on a number of centaurs[25] (including 2060 Chiron, 10199 Chariklo and 5145 Pholus). In addition to the water ice signature, a number of other models have been put forward:

Chiron appears to be the most complex. The spectra observed vary depending on the period of the observation. Water ice signature was detected during a period of low activity and disappeared during high activity.[31][32][33]

Similarities to comets

Comet 38P exhibits centaur-like behavior by making close approaches to Jupiter, Saturn, and Uranus between 1982 and 2067.[34]

Observations of Chiron in 1988 and 1989 near its

coma (a cloud of gas and dust evaporating from its surface). It is thus now officially classified as both a minor planet and a comet, although it is far larger than a typical comet and there is some lingering controversy. Other centaurs are being monitored for comet-like activity: so far two, 60558 Echeclus, and 166P/NEAT have shown such behavior. 166P/NEAT was discovered while it exhibited a coma, and so is classified as a comet, though its orbit is that of a centaur. 60558 Echeclus was discovered without a coma but recently became active,[35] and so it too is now classified as both a comet and an asteroid. Overall, there are ~30 centaurs for which activity has been detected, with the active population biased toward objects with smaller perihelion distances.[36]

Carbon monoxide has been detected in 60558 Echeclus[8] and Chiron [37] in very small amounts, and the derived CO production rate was calculated to be sufficient to account for the observed coma. The calculated CO production rate from both 60558 Echeclus and Chiron is substantially lower than what is typically observed for 29P/Schwassmann–Wachmann,[16] another distantly active comet often classified as a centaur.

There is no clear orbital distinction between centaurs and comets. Both

29P/Schwassmann-Wachmann and 39P/Oterma have been referred to as centaurs since they have typical centaur orbits. The comet 39P/Oterma is currently inactive and was seen to be active only before it was perturbed into a centaur orbit by Jupiter in 1963.[38] The faint comet 38P/Stephan–Oterma would probably not show a coma if it had a perihelion distance beyond Jupiter's orbit at 5 AU. By the year 2200, comet 78P/Gehrels
will probably migrate outwards into a centaur-like orbit.

Rotational periods

A periodogram analysis of the light-curves of these Chiron and Chariklo gives respectively the following rotational periods: 5.5±0.4~h and 7.0± 0.6~h.[39]

Size, density, reflectivity

Centaurs can reach diameters up to hundreds of kilometers. The largest centaurs have diameters in excess of 300 km, and primarily reside beyond 20 AU.[40]

Hypotheses of origin

The study of centaurs’ origins is rich in recent developments, but any conclusions are still hampered by limited physical data. Different models have been put forward for possible origin of centaurs.

Simulations indicate that the orbit of some Kuiper belt objects can be perturbed, resulting in the object's expulsion so that it becomes a centaur. Scattered disc objects would be dynamically the best candidates (For instance, the centaurs could be part of an "inner" scattered disc of objects perturbed inwards from the Kuiper belt.) for such expulsions, but their colours do not fit the bicoloured nature of the centaurs. Plutinos are a class of Kuiper belt object that display a similar bicoloured nature, and there are suggestions that not all plutinos' orbits are as stable as initially thought, due to perturbation by Pluto.[41] Further developments are expected with more physical data on Kuiper belt objects.

Some centaurs may have their origin in fragmentation episodes, perhaps triggered during close encounters with Jupiter.

2020 MK4, P/2008 CL94 (Lemmon), and P/2010 TO20 (LINEAR-Grauer) pass close to that of comet 29P/Schwassmann–Wachmann, the first discovered centaur and close encounters are possible in which one of the objects traverses the coma of 29P when active.[42]

At least one centaur, 2013 VZ70, might have an origin among Saturn's irregular moon population via impact, fragmentation, or tidal disruption.[43]

Notable centaurs

Name Year Discoverer Half-life[1]
(forward)
Class[a]
2060 Chiron 1977 Charles T. Kowal 1.03 Ma SU
5145 Pholus 1992 Spacewatch (David L. Rabinowitz) 1.28 Ma SN
7066 Nessus 1993 Spacewatch (David L. Rabinowitz) 4.9 Ma SK
8405 Asbolus 1995 Spacewatch (James V. Scotti) 0.86 Ma SN
10199 Chariklo 1997 Spacewatch 10.3 Ma U
10370 Hylonome 1995
Mauna Kea Observatory
6.3 Ma UN
54598 Bienor 2000
Marc W. Buie
et al.
? U
55576 Amycus 2002
NEAT at Palomar
11.1 Ma UK
  1. ^ the class is defined by the perihelion and aphelion distance of the object: S indicates a perihelion/aphelion near Saturn, U near Uranus, N near Neptune, and K in the Kuiper belt.

See also

Explanatory notes

  1. ^ For criticism of this idea see:[3]
  2. semi-major axis
    lies between Jupiter and Neptune

References

  1. ^
    S2CID 16002759
    .
  2. .
  3. ^ Billings, Lee (21 May 2018). "Astronomers Spot Potential 'Interstellar' Asteroid Orbiting Backward Around the Sun". Scientific American. Retrieved 1 June 2018.
  4. ^
    S2CID 199543466
    .
  5. .
  6. S2CID 13282788. Archived from the original
    (PDF) on 2009-09-19.
  7. ^ "Dawn at Ceres:What Have we Learned?" (PDF). Space Studies Board. National Academies. Archived from the original (PDF) on 2018-04-13. Retrieved 2023-10-11.
  8. ^
    S2CID 119093318
    .
  9. ^ "Unusual Minor Planets". Minor Planet Center. Retrieved 25 October 2010.
  10. ^ "Orbit Classification (Centaur)". JPL Solar System Dynamics. Archived from the original on 1 August 2021. Retrieved 13 October 2008.
  11. .
  12. ^ (PDF) on 2012-11-02.
  13. .
  14. ^ "JPL Small-Body Database Search Engine: List of centaurs". JPL Solar System Dynamics. Archived from the original on 20 April 2021. Retrieved 11 October 2018.
  15. ^ "JPL Small-Body Database Search Engine: List of TNOs with perihelia closer than Uranus's orbit". JPL Solar System Dynamics. Archived from the original on 29 August 2021. Retrieved 11 October 2018.
  16. ^
    S2CID 118507805
    .
  17. .
  18. .
  19. ^ Brown, Michael E. "How many dwarf planets are there in the outer solar system? (updates daily)". California Institute of Technology. Retrieved 13 February 2021.
  20. S2CID 119255885
    .
  21. .
  22. .
  23. .
  24. ^ "Three clones of centaur 8405 Asbolus making passes within 450Gm". Archived from the original on 2015-09-13. Retrieved 2009-05-02. ("Solex 10". Archived from the original on 2008-12-20.)
  25. ^ )
  26. ^ Barucci, M. A.; Doressoundiram, A.; Cruikshank, D. P. (2003). "Physical Characteristics of TNOs and Centaurs" (PDF). Laboratory for Space Studies and Astrophysics Instrumentation, Paris Observatory. Archived from the original (PDF) on 29 May 2008. Retrieved 20 March 2008.
  27. S2CID 122502310
    .
  28. .
  29. ^ Hainaut & Delsanti (2002) Color of Minor Bodies in the Outer Solar System Astronomy & Astrophysics, 389, 641 datasource
  30. igneous
    rocks.
  31. ^ Dotto, E; Barucci, M A; De Bergh, C (June 2003). "Colours and composition of the Centaurs". Earth, Moon, and Planets. 92 (1–4): 157–167.
    S2CID 189905595
    .
  32. .
  33. .
  34. ^ "JPL Close-Approach Data: 38P/Stephan-Oterma". NASA. 1981-04-04. last obs. Archived from the original on 2021-09-21. Retrieved 2009-05-07.
  35. ^ Choi, Y-J.; Weissman, P.R.; Polishook, D. (January 2006). "(60558) 2000 EC_98". IAU Circ. (8656): 2.
  36. S2CID 119093318
    .
  37. ^ Womack, M.; Stern, A. (1999). "Observations of Carbon Monoxide in (2060) Chiron" (PDF). Lunar and Planetary Science XXVIII. Retrieved 2017-07-11.
  38. .
  39. .
  40. .
  41. .
  42. ^ .
  43. .

External links