Chandra Wickramasinghe

Source: Wikipedia, the free encyclopedia.

Chandra Wickramasinghe

Doctoral advisorFred Hoyle

Nalin Chandra Wickramasinghe

origin of life and astrobiology. A student and collaborator of Fred Hoyle, the pair worked jointly for over 40 years[2] as influential proponents of panspermia.[3][4] In 1974 they proposed the hypothesis that some dust in interstellar space was largely organic, later proven to be correct.[5][6][7]

Wickramasinghe has advanced numerous fringe claims, including the argument that various outbreaks of illnesses on Earth are of extraterrestrial origins, including the

mad cow disease. For the 1918 flu pandemic they hypothesised that cometary dust brought the virus to Earth simultaneously at multiple locations—a view almost universally dismissed by experts on this pandemic.[8] Claims connecting terrestrial disease and extraterrestrial pathogens have been rejected by the scientific community.[8]

Wickramasinghe has written more than 40 books about astrophysics and related topics;

Buddhist sect Soka Gakkai International, that led to the publication of a dialogue with him, first in Japanese and later in English, on the topic of Space and Eternal Life.[12]

Education and career

Wickramasinghe studied at

Institute of Fundamental Studies
in Sri Lanka.

After fifteen years at University College Cardiff, Wickramasinghe took an equivalent position in the

University of Cardiff, a post he held from 1990 until 2006.[14] After retirement in 2006, he incubated the Cardiff Center for Astrobiology as a special project reporting to the president of the university. In 2011 the project closed down, losing its funding in a series of UK educational cut backs. After this event, Wickramasinghe was offered the opportunity to move to the University of Buckingham as Director of the Buckingham Centre for Astrobiology, University of Buckingham where he has been since 2011. He maintains his part-time position as a UK Professor at Cardiff University. In 2015 he was elected Visiting scholar, Churchill College, Cambridge, England 2015/16.[15]

He is a co-founder and board member of the Institute for the Study of Panspermia and Astroeconomics, set up in Japan in 2014,

Journal of Astrobiology & Outreach. He was a Visiting By-Fellow, Churchill College, Cambridge, England 2015/16;[15] Professor and Director of the Buckingham Centre for Astrobiology at the University of Buckingham, a post he has held since 2011;[9] Affiliated Visiting Professor, University of Peradeniya, Sri Lanka;[17] and a board member and research director at the Institute for the Study of Panspermia and Astroeconomics, Ogaki-City, Gifu, Japan.[18]

In 2017, Professor Chandra Wickramasinghe was appointed adjunct professor in the Department of Physics, at the University of Ruhuna, Matara, Sri Lanka.[19]

Research

In 1960 he commenced work in Cambridge on his PhD degree under the supervision of Fred Hoyle, and published his first scientific paper "On Graphite Particles as Interstellar Grains” in Monthly Notices of the Royal Astronomical Society in 1962.[20] He was awarded a PhD degree in mathematics in 1963 and was elected a Fellow of Jesus College Cambridge in the same year. In the following year he was appointed a Staff Member of the Institute of Astronomy, Cambridge. Here he continued to work on the nature of interstellar dust, publishing many papers in this field,[21] that led to a consideration of carbon-containing grains as well as the older silicate models.

Wickramasinghe published the first definitive book on Interstellar Grains in 1967.[22] He has made many contributions to this field, publishing over 350 papers in peer-reviewed journals, over 75 of which are in Nature. Hoyle and Wickramasinghe further proposed a radical kind of panspermia that included the claim that extraterrestrial life forms enter the Earth's atmosphere and were possibly responsible for epidemic outbreaks, new diseases, and genetic novelty that Hoyle and Wickramasinghe contended was necessary for macroevolution.[23]

Chandra Wickramasinghe had the longest-running collaboration with Fred Hoyle. Their publications on books and papers[21] arguing for panspermia and a cosmic hypothesis of life are controversial and, in particular detail, essentially contra the scientific consensus in both astrophysics and biology. Several claims made by Hoyle and Wickramasinghe between 1977 and 1981, such as a report of having detected interstellar cellulose, were criticised by one author as pseudoscience.[24] Phil Plait has described Wickramasinghe as a "fringe scientist" who "jumps on everything, with little or no evidence, and says it’s from outer space".[25]

Organic molecules in space

In 1974 Wickramasinghe first proposed the hypothesis that some dust in interstellar space was largely organic,[26] and followed this up with other research confirming the hypothesis.[27] Wickramasinghe also proposed and confirmed the existence of polymeric compounds based on the molecule formaldehyde (H2CO).[28] Fred Hoyle and Wickramasinghe later proposed the identification of bicyclic aromatic compounds from an analysis of the ultraviolet extinction absorption at 2175A.,[29] thus demonstrating the existence of polycyclic aromatic hydrocarbon molecules in space.

Hoyle–Wickramasinghe model of panspermia

Throughout his career, Wickramasinghe, along with his collaborator Fred Hoyle, has advanced the

comets can protect the "seeds of life", including DNA and RNA,[33][34][35] living, fossilized, or dormant life, cellular[36][37] or non-cellular;[33][34][35][36][38][39][40][41] and that the collisions of asteroids, comets, and moons have the potential to spread these "seeds of life" throughout an individual star system and then onward to others.[38][41] The most contentious issue around the Hoyle–Wickramasinghe model of the panspermia hypothesis is the corollary of their first two propositions that viruses and bacteria continue to enter the Earth's atmosphere from space, and are hence responsible for many major epidemics throughout history.[42][43][44]

Towards the end of their collaboration, Wickramasinghe and Hoyle hypothesised that abiogenesis occurred close to the Galactic Center before panspermia carried life throughout the Milky Way,[45] and stated a belief that such a process could occur in many galaxies throughout the Universe.[46][47]

Detection of living cells in the stratosphere

An image of a clump of microorganisms from 41 km fluorescing on application of a carbocyanine dye (indicating viability) is shown in the left panel, and scanning electron microscope image of a similar clump is shown on the right panel.

On 20 January 2001 the

Hyderabad, India to collect stratospheric dust from a height of 41 km (135,000 ft) with a view to testing for the presence of living cells. The collaborators on this project included a team of UK scientists led by Wickramasinghe. In a paper presented at a SPIE conference in San Diego in 2002 the detection of evidence for viable microorganisms from 41 km above the Earth's surface was presented.[48]
However, the experiment did not present evidence as to whether the findings are incoming microbes from space rather than microbes carried up to 41 km from the surface of the Earth.

In 2005 the ISRO group carried out a second stratospheric sampling experiment from 41 km altitude and reported the isolation of three new species of bacteria including one that they named Janibacter hoylei sp.nov. in honour of Fred Hoyle.[49] However, these facts do not prove that bacteria on Earth originated in the cosmic environment. Samplings of the stratosphere have also been carried out by Yang et al. (2005,[50] 2009[51]). During the experiment strains of highly radiation-resistant Deinococcus bacterium were detected at heights up to 35 km. Nevertheless, these authors have abstained from linking these discoveries to panspermia. Wickramasinghe was also involved in coordinating analyses of the red rain in Kerala in collaborations with Godfrey Louis.[52]

Extraterrestrial pathogens

Hoyle and Wickramasinghe have advanced the argument that various outbreaks of illnesses on Earth are of extraterrestrial origins, including the

mad cow disease. For the 1918 flu pandemic they hypothesised that cometary dust brought the virus to Earth simultaneously at multiple locations—a view almost universally dismissed by external experts on this pandemic.[8]

On 24 May 2003

severe acute respiratory syndrome (SARS) could be extraterrestrial in origin instead of originating from chickens. The Lancet subsequently published three responses to this letter, showing that the hypothesis was not evidence-based, and casting doubts on the quality of the experiments referenced by Wickramasinghe in his letter.[54][55][56] Claims connecting terrestrial disease and extraterrestrial pathogens have been rejected by the scientific community.[8]

In 2020, Wickramasinghe and colleagues published a paper claiming that

Severe acute respiratory syndrome coronavirus 2, the virus responsible for the COVID-19 pandemic was also of extraterrestrial origin, the claim was criticised for lacking evidence.[57]

Polonnaruwa

On 29 December 2012 a green fireball was observed in Polonnaruwa, Sri Lanka.[58][59] It disintegrated into fragments that fell to the Earth near the villages of Aralaganwila and Dimbulagala and in a rice field near Dalukkane. Rock samples were submitted to the Medical Research Institute of the Ministry of Health in Colombo.[citation needed]

The rocks were sent to the University of Cardiff in Wales for analysis, where Chandra Wickramasinghe's team analyzed them and claimed that they contained extraterrestrial diatoms. From January to March 2013, five papers were published in the fringe Journal of Cosmology outlining various results from teams in the United Kingdom, United States and Germany.[60][failed verification][61][failed verification] However, independent experts in meteoritics stated that the object analyzed by Wickramasinghe's team was of terrestrial origin,[62][63] a fulgurite created by lightning strikes on Earth.[64] Experts in diatoms complemented the statement, saying that the organisms found in the rock represented a wide range of extant terrestrial taxa, confirming their earthly origin.[62]

Wickramasinghe and collaborators responded, using

X-ray diffraction, oxygen isotope analysis, and scanning electron microscope observations, in a March 2013 paper asserting that the rocks they found were indeed meteorites,[65] instead of being created by lightning strikes on Earth as stated by scientists from the University of Peradeniya.[64][66] However, these claims were also criticised for not providing evidence that the rocks were actually meteorites.[67]

Cephalopod alien origin

In 2018, Wickramasinghe and over 30 other authors published a paper in Progress in Biophysics and Molecular Biology entitled "Cause of Cambrian Explosion - Terrestrial or Cosmic?" which argued in favour of panspermia as the origin of the Cambrian explosion, and posited that cephalopods are alien lifeforms that originated from frozen eggs that were transported to earth via meteor.[68] The claims gained widespread press coverage.[69][70][71] Virologist Karin Mölling, in a companion commentary published in the same journal, stated that the claims "cannot be taken seriously".[72]

Participation in the creation-evolution debate

Wickramasinghe and his mentor Fred Hoyle have also used their data to argue in favor of cosmic ancestry,[73][74][75][76][77][78] and against the idea of life emerging from inanimate objects by abiogenesis.[79]

Once again the Universe gives the appearance of being biologically constructed, and on this occasion on a truly vast scale. Once again those who consider such thoughts to be too outlandish to be taken seriously will continue to do so. While we ourselves shall continue to take the view that those who believe they can match the complexities of the Universe by simple experiments in their laboratories will continue to be disappointed.

Wickramasinghe attempts to present scientific evidence to support the notion of cosmic ancestry and "the possibility of high intelligence in the Universe and of many increasing levels of intelligence converging toward a God as an ideal limit."[80]

During the 1981 scientific creationist trial in Arkansas, Wickramasinghe was the only scientist testifying for the defense, which in turn was supporting creationism.[79][81] In addition, he wrote that the Archaeopteryx fossil finding is a forgery, a charge that the scientific community considers an "absurd" and "ignorant" statement.[82][83]

Honours and awards

Wickramasinghe was appointed

Member of the Order of the British Empire (MBE) in the 2022 New Year Honours for services to science, astronomy and astrobiology.[84]

Books

Articles

See also

References

  1. ^ Chown, Marcus (9 April 2005). "The Scientific Legacy of Fred Hoyle". NewScientist. Retrieved 25 July 2013.
  2. .
  3. .
  4. .
  5. ^ Wickramasinghe, D. T. & Allen, D. A. The 3.4-µm interstellar absorption feature. Nature 287, 518−519 (1980).
  6. ^ Allen, D. A. & Wickramasinghe, D. T. Diffuse interstellar absorption bands between 2.9 and 4.0 µm. Nature 294, 239−240 (1981).
  7. ^ Wickramasinghe, D. T. & Allen, D. A. Three components of 3–4 μm absorption bands. Astrophys. Space Sci. 97, 369−378 (1983).
  8. ^ .
  9. ^ a b University of Buckingham. "Professor Chandra Wickramasinghe". Retrieved 15 February 2016.
  10. ^ "Altimatrix Consulting". Archived from the original on 12 June 2010. Retrieved 16 July 2013.
  11. ^ Connor, Steve (1 March 2011). "We're all aliens... how humans began life in outer space". The Independent. The Independent.
  12. .
  13. ^ "Professor Chandra Wickramasinghe — University of Buckingham". Buckingham.ac.uk. Retrieved 18 January 2013.
  14. ^ "BBC News". UK National News Service. 7 September 2006. Retrieved 16 July 2013.
  15. ^ a b Caulfield, Noelle. "Fellowship Secretary". Churchill College, Cambridge. Churchill College, Cambridge. Archived from the original on 16 October 2015. Retrieved 27 April 2015.
  16. ^ ISPA - About us Archived 2015-05-21 at the Wayback Machine.
  17. ^ Senaratne, Atula. "Prof" (PDF). Abrecon 2015. University of Peradeniya. Archived from the original (PDF) on 18 May 2015. Retrieved 10 May 2015.
  18. ^ Tokoro, Gensuke. "Professor". www.ispajapan.com/. Institute for the Study of Panspermia and Astroeconomics. Archived from the original on 18 May 2015. Retrieved 12 May 2015.
  19. ^ Smith, William. "Prof. Nalin Chandra Wickramasinghe". Department of Physics at University of Ruhuna. Department of Physics at University of Ruhuna. Retrieved 27 February 2017.
  20. ^ a b "This Week's Citation Classic" (PDF). ISI Current Contents. 2 June 1986. Retrieved 18 January 2013.
  21. ^ a b "Archive of key historical publications — University of Buckingham". Buckingham.ac.uk. 3 April 1980. Retrieved 18 January 2013.
  22. ^
    OCLC 407751
    .
  23. ^ Fred Hoyle, Chandra Wickramasinghe and John Watson (1986). Viruses from Space and Related Matters. University College Cardiff Press.
  24. .
  25. ^ Plait, Phil (15 January 2013). "Claims of Life in a Meteorite are Meteorwrong". Slate Magazine. Retrieved 14 August 2021.
  26. ^ Nature, vol: 252, 462, 1974; and Nature, Vol 268, 610, 1977.
  27. ^ Wickramasinghe, D. T. & Allen, D. A. The 3.4-µm interstellar absorption feature. Nature 287, 518−519 (1980). Allen, D. A. & Wickramasinghe, D. T. Diffuse interstellar absorption bands between 2.9 and 4.0 µm. Nature 294, 239−240 (1981). Wickramasinghe, D. T. & Allen, D. A. Three components of 3–4 μm absorption bands. Astrophys. Space Sci. 97, 369−378 (1983).
  28. ^ N.C. Wickramasinghe, Formaldehyde Polymers in Interstellar Space, Nature, 252, 462, 1974
  29. ^ F. Hoyle and N.C. Wickramasinghe, Identification of the lambda 2200A interstellar absorption feature, Nature, 270, 323, 1977
  30. S2CID 13978227
    .
  31. .
  32. . Retrieved 3 August 2013.
  33. ^ a b Hoyle, Fred (1985). Living Comets. Cardiff: University College, Cardiff Press.
  34. ^ .
  35. ^ .
  36. ^ . Retrieved 3 August 2013.
  37. .
  38. ^ .
  39. ^ Hoyle, Fred (1981). Evolution from Space. London: J.M. Dent & Sons.
  40. ^ Hoyle, Fred (1981). Comets - a vehicle for panspermia. Dordrecht: D. Reidel Publishing Co. p. 227.
  41. ^ .
  42. ^ Hoyle, Fred (1979). Diseases from Space. London: J.M. Dent & Sons.
  43. PMID 2342043
    .
  44. ^ Hoyle, Fred (2000). Astronomical Origins of Life: Steps towards Panspermia. Dordrecht: Kluwer Academic Press.
  45. S2CID 189822129
    .
  46. .
  47. ^ "Life is a cosmic phenomenon; Wickramasinghe – Hoyle theories vindicated by Piyavi Wijewardene". 5 June 2017.
  48. S2CID 129736236
    .
  49. PMID 19643890. Archived from the original
    (PDF) on 21 September 2017. Retrieved 5 September 2019.
  50. ^ Yang, Y., Yokobori, S., Kawaguchi, J., et al., 2005. Investigation of cultivable microorganisms in the stratosphere collected by using a balloon in 2005, JAXA Research Development Report, JAXA-RR-08-001, 35-42
  51. .
  52. ^ Red rain in Kerala
  53. S2CID 43843273
    .
  54. .
  55. .
  56. .
  57. ^ "Wild theory suggests COVID-19 came to Earth aboard a space rock". Astronomy.com. 31 August 2020. Retrieved 14 August 2021.
  58. Bibcode:2013JCos...21.9560W. Archived from the original
    (PDF) on 6 August 2019. Retrieved 24 February 2015.
  59. (PDF) on 6 August 2019. Retrieved 16 January 2013.
  60. ^ Walter Jayawardhana (13 January 2013). "Polonnaruwa meteorite with evidence of life from outer space described the most important find in 500 years". LankaWeb. Retrieved 15 January 2013.
  61. Bibcode:2013JCos...21.9772W. Archived from the original
    (PDF) on 5 July 2013. Retrieved 4 February 2013.
  62. ^ a b Phil Plait (15 January 2013). "No, Diatoms Have Not Been Found in a Meteorite". Slate.com - Astronomy. Retrieved 16 January 2013.
  63. ^ "Meteors from outer space made definitive land fall in Aralaganwila says Professor Chandra Wickramasinghe". Hiru News. 29 April 2013. Retrieved 30 April 2013. When our news team contacted Professor of Geology Athula Senarathna of University of Peradeniya who carried out a research on the meteorite fall in Aralaganvila, said that there could not be any truth in Prof. Chandra Wickramasinghe claim.
  64. ^ a b "Aralaganwila stones are not meteors; says Peradeniya University". Hiru News. 14 January 2013. Retrieved 24 February 2015.
  65. Bibcode:2013JCos...2210004W. Archived from the original
    (PDF) on 5 July 2013. Retrieved 6 August 2013.
  66. .
  67. ^ Plait, Phil (11 March 2013). "UPDATE: No, Life Has Still Not Been Found in a Meteorite". Slate Magazine. Retrieved 14 August 2021.
  68. S2CID 4486796
    . Thus the possibility that cryopreserved Squid and/or Octopus eggs, arrived in icy bolides several hundred million years ago should not be discounted (below) as that would be a parsimonious cosmic explanation for the Octopus' sudden emergence on Earth ca. 270 million years ago.
  69. ^ "Are octopuses aliens from outer space that were brought to Earth by meteors?". The Independent. 18 May 2018. Retrieved 14 August 2021.
  70. ^ Brandon Specktor - Senior Writer 17 May 2018 (17 May 2018). "No, Octopuses Don't Come From Outer Space". livescience.com. Retrieved 14 August 2021.{{cite web}}: CS1 maint: numeric names: authors list (link)
  71. ^ Livni, Ephrat (19 May 2018). "A controversial study has a new spin on the otherworldliness of the octopus". Quartz. Retrieved 14 August 2021.
  72. PMID 29571770
    .
  73. ^ Figures don't Lie but Creationists Figure Archived 2016-03-04 at the Wayback Machine. By Alec Grynspan ( 9 November 1997)
  74. S2CID 118437731
    .
  75. ^ .
  76. .
  77. ^ "A Case of Fossil Forgery?". AskWhy. 18 November 2012. Retrieved 1 January 2013.
  78. ^ "No. 63571". The London Gazette (Supplement). 1 January 2022. p. N26.
  79. OCLC 520709
    .
  80. .
  81. .
  82. .
  83. .
  84. .
  85. ^ a b Wickramasinghe, N. C. "Formaldehyde polymers in interstellar Space" (PDF). Cosmology Science Publishers. Archived from the original (PDF) on 13 July 2020. Retrieved 18 January 2013. {{cite journal}}: Cite journal requires |journal= (help)
  86. S2CID 4170736
    . Retrieved 18 January 2013.
  87. . Retrieved 18 January 2013.
  88. .

External links