Chemostratigraphy

Source: Wikipedia, the free encyclopedia.

Chemostratigraphy, or chemical stratigraphy, is the study of the chemical variations within

lithographies
in establishing stratigraphic relationships between different rock layers.

Types of chemical variations

In some stratigraphic sequences, there is clearly a variation in color between different strata. Such color differences often originate from variations in the incorporation of

organic carbon
content of the rock. However, until relatively recently, these variations were not commonly investigated because of the great effort and expense involved in chemical analysis.

Recently, the development of new analytical techniques for chemical analysis for igneous petrological applications during the latter half of the 20th century, e.g., the

oxygen isotope variability in the calcite shells of foraminifera could be used as a proxy
for past ocean temperatures.

Thus, chemostratigraphy generally provides two useful types of information to the larger geological community. First, chemostratigraphy can be used to investigate environmental change on the local, regional, and global levels by relating variations in rock chemistry to changes in the environment in which the sediment was deposited. An extreme example of this type of investigation might be the discovery of strata rich in iridium near the boundary between the Cretaceous and Tertiary systems globally. The high concentration of iridium, which is generally rare in the Earth's crust, is indicative of a large delivery of extraterrestrial material, presumably from a large asteroid impactor during this time. A more prosaic example of chemostratigraphic reconstruction of past conditions might be the use of the carbon-13/carbon-12 ratio over geologic time as a proxy for changes in carbon cycle processes at different stages of biological evolution. Second, regionally or globally correlatable chemostratigraphic signals can be found in rocks whose formation time is well-constrained by radionuclide dating of the strata themselves or by strata easily correlated with them, such as a volcanic suite that interrupts nearby strata. However, many sedimentary rocks are much harder to date, because they lack minerals with high concentrations of radionuclides and cannot be correlated with nearly datable sequences. Yet many of these rocks do possess chemostratigraphic signals. Therefore, the correlation between chemostatigraphic signals in conventionally datable and non-datable sequences has extended greatly our understanding of the history of tectonically quiescent regions and of biological organisms that lived in such regions. Chemostratigraphy also has acted as a check on other sub-fields of stratigraphy such as biostratigraphy and magnetostratigraphy.

References

  • Prothero, Donald R.; Schwab, Fred, eds. (2014). "Geophysical and Chemostratigraphic Correlation". Sedimentary Geology (3rd ed.). W.H. Freeman. pp. 381–418. .
  • Berger, W.H.; Vincent, E. (1981). "Chemostratigraphy and biostratigraphic correlation: exercises in systematic stratigraphy". Oceanologica Acta: 115–127.
  • Renard, M.; Corbin, J.C.; Daux, V.; Emmanuel, L.; Baudin, F.; Tamburini, F. (2008). "Ch. 3: Chemostratigraphy". In Rey, Jacques; Galeotti, Simone (eds.). Stratigraphy: Terminology and Practice. Editions OPHRYS. pp. 41–52. .
  • Ramkumar, M., ed. (2015). Chemostratigraphy: Concepts, techniques and applications. Elsevier. .
  • Ramkumar, Mu. (2015). "Toward Standardization of Terminologies and Recognition of Chemostratigraphy as a Formal Stratigraphic Method". Chemostratigraphy. pp. 1–21. .

External links