Chromium(IV) oxide

Source: Wikipedia, the free encyclopedia.
Chromium(IV) oxide[1]
Chromium(IV) oxide
Names
IUPAC name
Chromium(IV) oxide, Chromium dioxide
Other names
  • Crolyn
  • magtrieve
Identifiers
3D model (
JSmol
)
ChEBI
ChemSpider
ECHA InfoCard
100.031.470 Edit this at Wikidata
RTECS number
  • GB6400000
UNII
  • InChI=1S/Cr.2O checkY
    Key: AYTAKQFHWFYBMA-UHFFFAOYSA-N checkY
  • InChI=1/Cr.2O/rCrO2/c2-1-3
    Key: AYTAKQFHWFYBMA-QAVXBIOBAI
  • O=[Cr]=O
Properties
CrO2
Molar mass 83.9949 g/mol
Appearance black
tetrahedral
ferromagnetic crystals
Density 4.89 g/cm3
Melting point 375 °C (707 °F; 648 K) (decomposes)
Insoluble
Structure
Rutile (tetragonal), tP6
P42/mnm, No. 136
Hazards
Flash point Non-flammable
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1 mg/m3[2]
REL (Recommended)
TWA 0.5 mg/m3[2]
IDLH
(Immediate danger)
250 mg/m3[2]
Safety data sheet (SDS) ICSC 1310
Related compounds
Other cations
  • Manganese(IV) oxide
Related
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Chromium dioxide or chromium(IV) oxide is an

data tape
applications for enterprise-class storage systems. It is still considered by many oxide and tape manufacturers to have been one of the best magnetic recording particulates ever invented.

Preparation and basic properties

CrO2 was first prepared by Friedrich Wöhler by decomposition of chromyl chloride. Acicular chromium dioxide was first synthesized in 1956 by Norman L. Cox, a chemist at E.I. DuPont, by decomposing chromium trioxide in the presence of water at a temperature of 800 K (527 °C; 980 °F) and a pressure of 200 MPa. The balanced equation for the hydrothermal synthesis is:

3
O2

The magnetic crystal that forms is a long, slender glass-like rod – perfect as a magnetic pigment for recording tape. When commercialized in the late 1960s as a recording medium, DuPont assigned it the tradename of Magtrieve.

CrO2 adopts the

octahedral coordination geometry and each oxide is trigonal planar.[3]

Uses

CrO2 cassette tape

The crystal's magnetic properties, derived from its ideal shape such as

μs) that traded some of the extended high-frequency response for lower noise, resulting in a 5–6 dB improvement in signal-to-noise ratio over ferric oxide audio tapes. These bias and EQ settings were later carried over to "chrome-equivalent" cobalt-modified tapes introduced in the mid-1970s by TDK, Maxell, and others. Later research significantly increased the coercivity of the particle by doping or adsorbing rare elements such as iridium onto the crystal matrix or by improving the axial length-to-deprecated[clarification needed
] ratios. The resulting product was potentially a competitor to metallic iron pigments but apparently achieved little market penetration.

Problems

Until manufacturers developed new ways to mill the oxide, the crystals could easily be broken in the manufacturing process, and this led to excessive print-through (echo). Output from a tape could drop about 1 dB or so in a year's time. Although the decrease was uniform across the frequency range and noise also dropped the same amount, preserving the dynamic range, the decrease misaligned Dolby noise reduction decoders that were sensitive to level settings. The chrome coating was harder than competitive coatings, and that led to accusations of excessive head wear. Although the tape initially wore hard ferrite heads faster than oxide-based tapes, it actually wore softer permalloy heads at a slower rate; and head wear was more a problem for permalloy heads than for ferrite heads. After 500 hours of running across ferrite heads, chrome tape had polished the granular surface enough that there was no more detectable wear, and the gap edges remained sharp and distinct. The head wear scare and licensing issues with DuPont kept blank consumer chrome tapes at a great disadvantage versus the eventually more popular Type II tapes that used cobalt-modified iron oxide, but chrome was the tape of choice for the music industry's cassette releases. Because of its low Curie temperature of approximately 386 K (113 °C; 235 °F), chrome tape lent itself to high-speed thermomagnetic duplication of audio and video cassettes for pre-recorded product sales to the consumer and industrial markets.[5]

Producers

DuPont licensed the product to

Epitaxial) "chrome equivalent" Type II audio cassettes and various videotape formats as substitutes. Added to that was the problem that the production of CrO2 yielded toxic by-products of which Japanese manufacturers had great difficulty properly disposing. BASF eventually became the largest producer of both the chromium dioxide pigment and chrome tapes, basing its VHS & S-VHS video tape, audio cassettes, and 3480 data cartridges on this formulation. DuPont and BASF had also introduced chrome-cobalt "blended" oxide pigments which combined about 70% cobalt-modified iron oxide with 30% chrome oxide into a single coating, presumably to offer improved performance at lower costs than pure chrome. Many high-grade VHS tapes also used much smaller amounts of chrome in their formulations because its magnetic properties combined with its cleaning effects on heads made it a better choice than aluminium oxide or other non-magnetic materials added to VHS tape to keep heads clean. DuPont discontinued its production of chromium dioxide particles in the 1990s. In addition to BASF, which no longer owns a tape manufacturing division, Bayer AG of Germany, Toda Kogyo and Sakai Chemical
of Japan also do or can produce the magnetic particles for commercial applications.

References

  1. .
  2. ^ a b c NIOSH Pocket Guide to Chemical Hazards. "#0141". National Institute for Occupational Safety and Health (NIOSH).
  3. ^ .
  4. ISBN 978-3527306732.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link
    )
  5. .

Further reading