Coal-fired power station

Source: Wikipedia, the free encyclopedia.
(Redirected from
Coal Fired Power Plant
)

Bełchatów Power Station in Bełchatów, Poland
Frimmersdorf Power Station in Grevenbroich, Germany
Coal-fired power station diagram
Share of electricity production from coal

A coal-fired power station or coal power plant is a

gigawatts capacity.[1] They generate about a third of the world's electricity,[2] but cause many illnesses and the most early deaths,[3] mainly from air pollution.[4][5] World installed capacity doubled from 2000 to 2023 and increased 2% in 2023.[6]

A coal-fired power station is a type of fossil fuel power station. The coal is usually pulverized and then burned in a pulverized coal-fired boiler. The furnace heat converts boiler water to steam, which is then used to spin turbines that turn generators. Thus chemical energy stored in coal is converted successively into thermal energy, mechanical energy and, finally, electrical energy.

Coal-fired power stations emit over 10 billion tonnes of

stop generating electricity from coal by 2030, and the rest of the world by 2040.[18] Vietnam is among the few coal-dependent fast developing countries that fully pledged to phase out unbated coal power by the 2040s or as soon as possible thereafter.[19]

History

Holborn Viaduct power station in London, the world's first public steam-driven coal power station, opened in 1882

The first coal-fired power stations were built in the late 19th century and used reciprocating engines to generate direct current. Steam turbines allowed much larger plants to be built in the early 20th century and alternating current was used to serve wider areas.

Transport and delivery of coal

Castle Gate Plant near Helper, Utah.

Coal is delivered by highway truck,

diesel-electric-drive trucks
. A large coal train called a "unit train" may be 2 km long, containing 130-140 cars with around 100 tonnes of coal in each one, for a total load of over 10,000 tonnes. A large plant under full load requires at least one coal delivery this size every day. Plants may get as many as three to five trains a day, especially in "peak season" during the hottest summer or coldest winter months (depending on local climate) when power consumption is high.

Modern unloaders use rotary dump devices, which eliminate problems with coal freezing in bottom dump cars. The unloader includes a train positioner arm that pulls the entire train to position each car over a coal hopper. The dumper clamps an individual car against a platform that swivels the car upside down to dump the coal. Swiveling couplers enable the entire operation to occur while the cars are still coupled together. Unloading a unit train takes about three hours.

Shorter trains may use railcars with an "air-dump", which relies on air pressure from the engine plus a "hot shoe" on each car. This "hot shoe" when it comes into contact with a "hot rail" at the unloading trestle, shoots an electric charge through the air dump apparatus and causes the doors on the bottom of the car to open, dumping the coal through the opening in the trestle. Unloading one of these trains takes anywhere from an hour to an hour and a half. Older unloaders may still use manually operated bottom-dump rail cars and a "shaker" attached to dump the coal.

A collier (cargo ship carrying coal) may hold 41,000 tonnes (40,000 long tons) of coal and takes several days to unload. Some colliers carry their own conveying equipment to unload their own bunkers; others depend on equipment at the plant. For transporting coal in calmer waters, such as rivers and lakes, flat-bottomed

towboats
.

For start up or auxiliary purposes, the plant may use fuel oil as well. Fuel oil can be delivered to plants by

pipeline, tanker, tank car or truck. Oil is stored in vertical cylindrical steel tanks with capacities as high as 14,000 cubic metres (90,000 bbl). The heavier
no. 5 "bunker" and no. 6 fuels are typically steam-heated before pumping in cold climates.

Operation

Components of a coal-fired power station

As a type of

generators
. Compared to a thermal power station burning other fuel types, coal specific fuel processing and ash disposal is required.

For units over about 200

hundred largest coal power stations
range in size from 3,000MW to 6,700MW.

Fuel processing

Coal is prepared for use by crushing the rough coal to pieces less than 5 cm in size. The coal is then transported from the storage yard to in-plant storage silos by conveyor belts at rates up to 4,000 tonnes per hour.

In plants that burn pulverized coal, silos feed coal to

talcum powder
, sort them, and mix them with primary combustion air, which transports the coal to the boiler furnace and preheats the coal in order to drive off excess moisture content. A 500 MWe plant may have six such pulverizers, five of which can supply coal to the furnace at 250 tonnes per hour under full load.

In plants that do not burn pulverized coal, the larger 5 cm pieces may be directly fed into the silos which then feed either mechanical distributors that drop the coal on a traveling grate or the cyclone burners, a specific kind of combustor that can efficiently burn larger pieces of fuel.

Boiler operation

Plants designed for

ash
, yielding lower furnace temperatures and requiring larger induced-draft fans. The firing systems also differ from black coal and typically draw hot gas from the furnace-exit level and mix it with the incoming coal in fan-type mills that inject the pulverized coal and hot gas mixture into the boiler.

Ash disposal

The ash is often stored in ash ponds. Although the use of ash ponds in combination with air pollution controls (such as wet scrubbers) decreases the amount of airborne pollutants, the structures pose serious health risks for the surrounding environment.[20] Power utility companies have often built the ponds without liners, especially in the United States, and therefore chemicals in the ash can leach into groundwater and surface waters.[21]

Since the 1990s, power utilities in the U.S. have designed many of their new plants with dry ash handling systems. The dry ash is disposed in landfills, which typically include liners and groundwater monitoring systems.[22] Dry ash may also be recycled into products such as concrete, structural fills for road construction and grout.[23]

Fly ash collection