Complete Genomics

Source: Wikipedia, the free encyclopedia.
Complete Genomics
Company type
Parent
MGI
Websitewww.completegenomics.com

Complete Genomics is a life sciences company that has developed and commercialized a DNA sequencing platform for human genome sequencing and analysis. This solution combines the company's proprietary human genome sequencing technology with its informatics and data management software to provide finished variant reports and assemblies at Complete Genomics’ commercial genome center in Mountain View, California. [1]

History

Complete Genomics was founded in June 2005 by Clifford Reid, Radoje (Rade) Drmanac, and John Curson. Clifford Reid was the chairman, president and chief executive officer of Complete Genomics before leaving in 2015 to set up Genos, a spinoff of Complete Genomics' consumer division.[2][3]

In February 2009, Complete Genomics announced that it had sequenced its first human genome and submitted the resulting variant data to the National Center for Biotechnology Information database. Then, in November 2009, Complete Genomics published sequence data for three human genomes in the journal Science.[4] By the end of 2009, Complete Genomics had sequenced 50 human genomes. To date, the company has sequenced more than 20,000 genomes.

The resulting data has supported research in diverse areas such as screening of

Prader-Willi syndrome and autism,[12] ophthalmology,[13] and oncology.[14][15][16][17][18] In 2014, a collaboration among Radboud University (The Netherlands), Maastricht University Medical Centre (The Netherlands), Central South University (China) and Complete Genomics identified major causes of intellectual disability using whole genome sequencing.[19]

In 2016, Complete Genomics contributed over 184 phased human genomes to

George Church's Personal Genome Project.[20] In 2019, they published their new single-tube long fragment read (stLFR) technology, enabling the construction of long DNA molecules from short reads using a combinatorial process of DNA barcoding. It enables phasing, SV detection, scaffolding, and cost-effective diploid de novo genome assembly from second-generation sequencing technology.[21]

In March 2013, Complete Genomics was acquired by

BGI Group, a genomics services company in Shenzhen, Guangdong, China.[22] After the acquisition, Complete Genomics moved to San Jose and in June 2018 became part of MGI.[23] MGI was a subsidiary of BGI Group before it was spun out and listed on the Shanghai stock exchange in 2022. [24]

Technology platform

Complete Genomics’ proprietary human genome sequencing technology is optimized exclusively for studying human DNA, providing assembled sequences and variation files. The technology relies on DNA nanoball sequencing, which combines short sequences of DNA into a complete genome. It is designed to use lower volumes and concentrations of reagents than existing systems and have large number of base reads per image.[4]

In 2023, Complete Genomics launched a new line of genetic sequencers, DNBSEQ-T20, designed to decode DNA in larger quantities and at a lower price point – than existing sequencing tools. The new products could signal a new era of more affordable testing, leading to wider availability and the potential to fulfill the long-desired promise of precision medicine. [25] While the new platform — with its promise of sub-$100 human genomes — may sound enticing to those striving for lower sequencing costs, with limited performance data available and a requirement for ultra-high throughput, it remains to be seen how the instrument will resonate with the broader genomics community.[26]

References

  1. ^ "Complete Genomics Announces Updated Mission and New Partnerships on 18th Anniversary". News-Medical.net. 2023-06-15. Retrieved 2023-09-04.
  2. ^ "Consumer Genomics Startup Genos Research Plans to Let Customers Explore, Share Their Data". GenomeWeb. 13 June 2016. Retrieved 2019-06-15.
  3. ^ "Complete Genomics Announces Updated Mission and New Partnerships on 18th Anniversary". News-Medical. 15 June 2023. Retrieved 2023-06-15.
  4. ^
    S2CID 17309571
    .
  5. ^ Winard R; et al. (2014). "In vitro screening of embryos by whole-genome sequencing: now, in the future or never?". Hum Reprod. 29 (4): 842–851.
    PMID 24491297
    .
  6. ^ Li H; et al. (2014). "Relationship estimation from whole-genome sequence data". PLOS Genet. 10 (1): e1004144.
    PMID 24497848
    .
  7. ^ Su S-Y; et al. (2012). "Detection of identity by descent using next-generation whole genome sequencing data". BMC Bioinformatics. 13: 121.
    PMID 22672699
    .
  8. ^ Bundo M (2014). "Increased L1 retrotransposition in the neuronal genome in schizophrenia". Neuron. 81 (2): 306–313.
    PMID 24389010
    .
  9. ^ Kai Y; et al. (2013). "Aging as accelerated accumulation of somatic variants: whole-genome sequencing of centenarian and middle-aged monozygotic twin pairs". Twin Research and Human Genetics. 16 (6): 1026–1032.
    PMID 24182360
    .
  10. ^ Wang K; et al. (2013). "Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement". Genome Medicine. 5 (7): 67.
    PMID 23889995
    .
  11. ^ Cui H; et al. (2013). "Eating disorder predisposition is associated with ESRRA and HDAC4 mutations". J Clin Invest. 123 (11): 4706–4713.
    PMID 24216484
    .
  12. ^ Schaaf CP; et al. (2013). "Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism". Nature Genetics. 45 (11): 1405–1408.
    PMID 24076603
    .
  13. ^ Nishiguchi KM; et al. (2012). "Genes associated with retinitis pigmentosa and allied diseases are frequently mutated in the general population". PLOS ONE. 7 (7): e41902.
    PMID 22848652
    .
  14. ^ Ma Y; et al. (2012). "Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia". Proc Natl Acad Sci USA. 110 (18): 7429–7433.
    PMID 23569245
    .
  15. ^ Kiel MJ; et al. (2012). "Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma". The Journal of Experimental Medicine. 209 (9): 1553–1565.
    PMID 22891276
    .
  16. ^ Molenaar JJ; et al. (2012). "Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes". Nature. 483 (7391): 589–593.
    PMID 22367537
    .
  17. ^ Turajlic S; et al. (2011). "Whole genome sequencing of matched primary and metastatic acral melanomas". Genome Res. 22 (2): 196–207.
    PMID 22183965
    .
  18. ^ Yokoyama S; et al. (2011). "GA novel recurrent mutation in MITF predisposes to familial and sporadic melanoma". Nature. 480 (7375): 99–103.
    PMID 22080950
    .
  19. ^ Gilissen C; et al. (2014). "Genome sequencing identifies major causes of severe intellectual disability". Nature. 511 (7509): 344–347.
    S2CID 205238886
    .
  20. .
  21. .
  22. ^ Specter, Michael (6 January 2014) The Gene Factory The New Yorker, Retrieved 28 October 2014
  23. ^ brandonvd. "About Us". Complete Genomics. Retrieved 2019-06-15.
  24. ^ Smyth, Jamie; Sevastopulo, Demetri (18 April 2023). "Chinese genetics company targets US despite political tensions". FinancialTimes. Retrieved 2023-04-18.
  25. ^ Bryant, Meg; Sevastopulo, Demetri (8 February 2023). "Complete Genomics sequencer reads human genome for under $100". Bioworld. Retrieved 2023-02-08.
  26. ^ Zhang, Huanjia (8 February 2023). "Complete Genomics Unveils New Platform for Ultra-High-Throughput Sequencing Market". GenomeWeb. Retrieved 2023-02-08.

External links