Composition of the human body

Source: Wikipedia, the free encyclopedia.
atomic percent
)

Body composition may be analyzed in various ways. This can be done in terms of the

carbohydrates (such as glycogen and glucose) and DNA. In terms of tissue type, the body may be analyzed into water, fat, connective tissue, muscle, bone
, etc. In terms of cell type, the body contains hundreds of different types of cells, but notably, the largest number of cells contained in a human body (though not the largest mass of cells) are not human cells, but bacteria residing in the normal human gastrointestinal tract.

Elements

The main elements that comprise the human body (including water) can be summarized as CHNOPS.
Element Symbol percent
mass
percent
atoms
Oxygen O 65.0 24.0
Carbon C 18.5 12.0
Hydrogen H 9.5 62.0
Nitrogen N 2.6 1.1
Calcium Ca 1.3 0.22
Phosphorus P 0.6 0.22
Potassium K 0.2 0.03
Sulfur S 0.3 0.038
Sodium Na 0.2 0.037
Chlorine Cl 0.2 0.024
Magnesium Mg 0.1 0.015
All others < 0.1 < 0.3
Parts-per-million
cube of relative abundance by mass of elements in an average adult human body down to 1 ppm

About 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium. All 11 are necessary for life. The remaining elements are trace elements, of which more than a dozen are thought on the basis of good evidence to be necessary for life.[1] All of the mass of the trace elements put together (less than 10 grams for a human body) do not add up to the body mass of magnesium, the least common of the 11 non-trace elements.

Other elements

Not all elements which are found in the human body in trace quantities play a role in life. Some of these elements are thought to be simple common contaminants without function (examples: caesium, titanium), while many others are thought to be active toxins, depending on amount (cadmium, mercury, lead, radioactives). In humans, arsenic is toxic, and its levels in foods and dietary supplements are closely monitored to reduce or eliminate its intake.[2]

Some elements (silicon, boron, nickel, vanadium) are probably needed by mammals also, but in far smaller doses. Bromine is used by some (though not all) bacteria, fungi,

seaweeds, and opportunistically in eosinophils in humans. One study has indicated bromine to be necessary to collagen IV synthesis in humans.[3] Fluorine is used by a number of plants to manufacture toxins but only functions in humans as a local topical hardening agent in tooth enamel.[4]

Elemental composition list

The average 70 kg (150 lb) adult human body contains approximately 7×1027 atoms and contains at least detectable traces of 60 chemical elements.[5] About 29 of these elements are thought to play an active positive role in life and health in humans.[6]

The relative amounts of each element vary by individual, mainly due to differences in the proportion of fat, muscle and bone in their body. Persons with more fat will have a higher proportion of carbon and a lower proportion of most other elements (the proportion of hydrogen will be about the same). The numbers in the table are averages of different numbers reported by different references.

The adult human body averages ~53% water.

atomic percent
, and these numbers along with the complementary % numbers for oxygen in water, are the largest contributors to overall mass and atomic composition figures. Because of water content, the human body contains more oxygen by mass than any other element, but more hydrogen by atom-fraction than any element.

The elements listed below as "Essential in humans" are those listed by the US

National Research Council as beneficial to human health and possibly or probably essential.[10]

Atomic number Element Fraction of mass
[11][12][13][14][15][16]
Mass (kg)[17]
Atomic percent
Essential in humans[18] Negative effects of excess
Group
8 Oxygen 0.65 45 24 Yes (e.g. water, electron acceptor)[19] Reactive oxygen species 16
6 Carbon 0.18 13 12 Yes[19] (organic compounds) 14
1 Hydrogen 0.10 7 62 Yes[19] (e.g. water) Acidosis 1
7 Nitrogen 0.02–0.03 1.8 1.1 Yes[19] (e.g. DNA and amino acids) 15
20 Calcium 0.011–0.015 1.0 0.22
Hydroxylapatite in bones
)
Hypercalcaemia 2
15 Phosphorus 5–7×10−3 [22] 0.78 0.22 Yes[19][20][21] (e.g. DNA, Phospholipids and Phosphorylation) Hyperphosphatemia 15
19 Potassium 1.5–2×10−3[23] 0.14 0.033
Na+/K+-ATPase
)
Hyperkalemia 1
16 Sulfur 2.5×10−3 0.14 0.038 Yes[19] (e.g. Cysteine, Methionine, Biotin, Thiamine) Sulfhemoglobinemia 16
11 Sodium 1.5×10−3 0.10 0.037
Na+/K+-ATPase
)
Hypernatremia 1
17 Chlorine 1.5×10−3 0.095 0.024 Yes[20][21] (e.g. Cl-transporting ATPase) Hyperchloremia 17
12 Magnesium 500×10−6 0.019 0.0070 Yes[20][21] (e.g. binding to ATP and other nucleotides) Hypermagnesemia 2
26 Iron* 60×10−6 0.0042 0.00067 Yes[20][21] (e.g. Hemoglobin, Cytochromes) Iron overload 8
9 Fluorine 37×10−6 0.0026 0.0012 Yes (
US, EU),[25][26] Maybe (WHO)[27]
Fluorine: Highly toxic

Fluoride: Toxic in high amounts

17
30 Zinc 32×10−6 0.0023 0.00031
Zinc finger proteins
)
Zinc toxicity 12
14 Silicon 20×10−6 0.0010 0.0058 Probably[28] 14
31 Gallium 4.9×10−6 0.0007 0.00093 No Gallium halide poisoning[29] 13
37 Rubidium 4.6×10−6 0.00068 0.000033 No Potassium replacement 1
38 Strontium 4.6×10−6 0.00032 0.000033 No Calcium replacement 2
35 Bromine 2.9×10−6 0.00026 0.000030 Maybe[30] Bromism 17
82 Lead 1.7×10−6 0.00012 0.0000045 No Lead poisoning 14
29 Copper 1×10−6 0.000072 0.0000104
copper proteins
)
Copper toxicity 11
13 Aluminium 870×10−9 0.000060 0.000015 No
Aluminium poisoning
13
48 Cadmium 720×10−9 0.000050 0.0000045 No Cadmium poisoning 12
58 Cerium 570×10−9 0.000040 No
56 Barium 310×10−9 0.000022 0.0000012 No toxic in higher amounts 2
50 Tin 240×10−9 0.000020 6.0×10−7 Maybe[1] 14
53 Iodine 160×10−9 0.000020 7.5×10−7
thyroxine, triiodothyronine
)
Iodine-induced hyperthyroidism 17
22 Titanium 130×10−9 0.000020 No 4
5 Boron 690×10−9 0.000018 0.0000030 Probably[10][31] 13
34 Selenium 190×10−9 0.000015 4.5×10−8 Yes[20][21] (e.g. selenocysteine) Selenium toxicity 16
28 Nickel 140×10−9 0.000015 0.0000015 Maybe[1] Nickel Toxicity 10
24 Chromium 24×10−9 0.000014 8.9×10−8 Maybe[1][20][21] 6
25 Manganese 170×10−9 0.000012 0.0000015
Mn-SOD
)
Manganism 7
33 Arsenic 260×10−9 0.000007 8.9×10−8 Maybe[1][2] Arsenic poisoning 15
3 Lithium 31×10−9 0.000007 0.0000015
hormones and vitamins
)
Lithium toxicity 1
80 Mercury 190×10−9 0.000006 8.9×10−8 No Mercury poisoning 12
55 Caesium 21×10−9 0.000006 1.0×10−7 No 1
42 Molybdenum 130×10−9 0.000005 4.5×10−8 Yes[20][21] (e.g. the molybdenum oxotransferases, Xanthine oxidase and Sulfite oxidase) 6
32 Germanium 5×10−6 No 14
27 Cobalt 21×10−9 0.000003 3.0×10−7 Yes (e.g. Cobalamin/Vitamin B12)[32][33] 9
44 Ruthenium 22×10−9 0.000007 No [34] 8
51 Antimony 110×10−9 0.000002 No toxic 15
47 Silver 10×10−9 0.000002 No 11
41 Niobium 1600×10−9 0.0000015 No 5
40 Zirconium 6×10−9 0.000001 3.0×10−7 No 4
57 Lanthanum 1370×10−9 8×10−7 No
52 Tellurium 120×10−9 7×10−7 No 16
39 Yttrium 6×10−7 No 3
83 Bismuth 5×10−7 No 15
81 Thallium 5×10−7 No highly toxic 13
49 Indium 4×10−7 No 13
79 Gold 3×10−9 2×10−7 3.0×10−7 No uncoated nanoparticles possibly
genotoxic[35][36][37]
11
21 Scandium 2×10−7 No 3
73 Tantalum 2×10−7 No 5
23 Vanadium 260×10−9 0.000020 1.2×10−8 Possibly[10] (suggested osteo-metabolism (bone) growth factor) 5
90 Thorium 1×10−7 No toxic, radioactive
92 Uranium 1×10−7 3.0×10−9 No toxic, radioactive
62 Samarium 5.0×10−8 No
74 Tungsten 2.0×10−8 No 6
4 Beryllium 3.6×10−8 4.5×10−8 No toxic in higher amounts 2
88 Radium 3×10−14 1×10−17 No toxic, radioactive 2
2 Helium 20.39×10−21 2.4×10−14 1×10−17 No noble gas 18
10 Neon 8.5×10−23 1×10−14 1×10−17 No noble gas 18
18 Argon 4.25×10−23 0.5×10−14 1×10−17 No noble gas 18
36 Krypton 2.125×10−23 0.25×10−14 1×10−17 No noble gas 18

*Iron = ~3 g in males, ~2.3 g in females

Of the 94 naturally occurring chemical elements, 61 are listed in the table above. Of the remaining 33, it is not known how many occur in the human body.

Most of the elements needed for life are relatively common in the Earth's crust. Aluminium, the third most common element in the Earth's crust (after oxygen and silicon), serves no function in living cells, but is toxic in large amounts, depending on its physical and chemical forms and magnitude, duration, frequency of exposure, and how it was absorbed by the human body.[38] Transferrins can bind aluminium.[39]

Periodic table

Essential elements for higher organisms (eucarya).[40][41][42][30][43]
H   He
Li Be   B C N O F Ne
Na Mg   Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Legend:
  The
four basic organic elements
  Quantity elements
  Essential
trace elements
  Essentiality or function debated

Composition

The composition of the human body can be classified as follows:

The estimated contents of a typical 20-micrometre human cell is as follows:[44]

Compound type Percent of mass Mol. weight (daltons) Compound Percent of molecules
Water 65 18 1.74×1014 98.73
Other
inorganics
1.5 N/A 1.31×1012 0.74
Lipids 12 N/A 8.4×1011 0.475
Other organics 0.4 N/A 7.7×1010 0.044
Protein 20 N/A 1.9×1010 0.011
RNA 1.0 N/A 5×107 3×10−5
DNA 0.1 1×1011 46 3×10−11

Tissues

The main cellular components of the human body[45][46][47]
Cell type % mass % cell count
Erythrocytes (red blood cells) 4.2 85.0
Muscle cells 28.6 0.001
Adipocytes (fat cells) 18.6 0.2
Other cells 14.3 14.8
Extracellular components 34.3 -

Body composition can also be expressed in terms of various types of material, such as:

Composition by cell type

There are many species of bacteria and other microorganisms that live on or inside the healthy human body. In fact, there are roughly as many microbial as human cells in the human body by number.[45][48][49][50][51] (much less by mass or volume). Some of these

commensal
organisms.

See also

References

  1. ^
    S2CID 92997696 – via Elsevier
    .
  2. ^ a b "Arsenic in Food and Dietary Supplements". US Food and Drug Administration. 22 May 2019. Retrieved 20 August 2019.
  3. PMID 24906154
    .
  4. .
  5. ^ "Questions and Answers - How many atoms are in the human body?". education.jlab.org. Retrieved 4 April 2023.
  6. ^ "Ultratrace minerals". Authors: Nielsen, Forrest H. USDA, ARS Source: Modern nutrition in health and disease / editors, Maurice E. Shils ... et al.. Baltimore : Williams & Wilkins, c. 1999, p. 283-303. Issue Date: 1999 URI: [1]
  7. WP:CALC
    for the mean of means for males and females, since the two groups are of about equal size
  8. ^ See table 1. here
  9. ^ "Guidance for Industry: A Food Labeling Guide 14. Appendix F". US Food and Drug Administration. 1 January 2013. Archived from the original on 4 April 2017.
  10. ^ . Retrieved 21 June 2016.
  11. .
  12. ^ "Elemental Composition of the Human Body" Archived 2018-12-18 at the Wayback Machine by Ed Uthman, MD Retrieved 17 June 2016
  13. .
  14. .)
  15. .
  16. .
  17. . Retrieved 17 June 2016.
  18. ^ Nielsen FH. "Ultratrace minerals". Modern nutrition in health and disease / editors, Maurice E. Shils ... [et al.] Retrieved 4 April 2023 – via PubAg.
  19. ^ . Retrieved 19 June 2016.
  20. ^ . Retrieved 18 June 2016.
  21. ^ a b c d e f g h i j k l "Federal Register :: Request Access". unblock.federalregister.gov. Retrieved 4 April 2023.
  22. PMID 11833045
    .
  23. .
  24. ^ Australian National Health and Medical Research Council (NHMRC) and New Zealand Ministry of Health (MoH)
  25. ^ "Fluoride in Drinking Water: A Review of Fluoridation and Regulation Issues"
  26. ISSN 1831-4732
    .
  27. ^ "WHO/SDE/WSH/03.04/96 "Fluoride in Drinking-water"" (PDF). Retrieved 4 April 2023.
  28. PMID 26617630
    .
  29. .
  30. ^ .
  31. .
  32. . Retrieved 19 June 2016.
  33. ^ Toeniskoetter S (2020). "Ruthenium". Biochemical Periodic Table.
  34. S2CID 84837060
    .
  35. .
  36. .
  37. .
  38. .
  39. ^ Ultratrace minerals. Authors: Nielsen, Forrest H. USDA, ARS Source: Modern nutrition in health and disease / editors, Maurice E. Shils ... et al. Baltimore: Williams & Wilkins, c1999., p. 283-303. Issue Date: 1999 URI: [2]
  40. PMID 30066063
    .
  41. .
  42. .
  43. on 2018-04-16. Retrieved 2011-04-06.
  44. ^ .
  45. .
  46. .
  47. ^ American Academy of Microbiology FAQ: Human Microbiome Archived 31 December 2016 at the Wayback Machine January 2014
  48. ^ Judah L. Rosner for Microbe Magazine, February 2014. Ten Times More Microbial Cells than Body Cells in Humans?
  49. PMID 29634682
    .
  50. .