Concentration

Source: Wikipedia, the free encyclopedia.
Test tubes with liquid in which a blue dye is dissolved in different concentrations. In the test tube with dark blue liquid (in front), the blue dye is dissolved in a high concentration. In the following test tubes, the blue dye is dissolved in a lower concentration (and at the same time in a smaller amount, since the volume is approximately the same). Image is AI generated.

In

normal concentration and osmotic concentration. Dilution is reduction of concentration, e.g. by adding solvent to a solution. The verb to concentrate
means to increase concentration, the opposite of dilute.

Etymology

Concentration-, concentratio, action or an act of coming together at a single place, bringing to a common center, was used in post-classical Latin in 1550 or earlier, similar terms attested in Italian (1589), Spanish (1589), English (1606), French (1632).[2]

Qualitative description

These glasses containing red dye demonstrate qualitative changes in concentration. The solutions on the left are more dilute, compared to the more concentrated solutions on the right.

Often in informal, non-technical language, concentration is described in a

saturated. If additional solute is added to a saturated solution, it will not dissolve, except in certain circumstances, when supersaturation may occur. Instead, phase separation will occur, leading to coexisting phases, either completely separated or mixed as a suspension
. The point of saturation depends on many variables, such as ambient temperature and the precise chemical nature of the solvent and solute.

Concentrations are often called levels, reflecting the mental

levels on the vertical axis of a graph, which can be high or low (for example, "high serum levels of bilirubin" are concentrations of bilirubin in the blood serum that are greater than normal
).

Quantitative notation

There are four quantities that describe concentration:

Mass concentration

The mass concentration is defined as the mass of a constituent divided by the volume of the mixture :

The SI unit is kg/m3 (equal to g/L).

Molar concentration

The molar concentration is defined as the amount of a constituent (in moles) divided by the volume of the mixture :

The SI unit is mol/m3. However, more commonly the unit mol/L (= mol/dm3) is used.

Number concentration

The number concentration is defined as the number of entities of a constituent in a mixture divided by the volume of the mixture :

The SI unit is 1/m3.

Volume concentration

The volume concentration (not to be confused with volume fraction[3]) is defined as the volume of a constituent divided by the volume of the mixture :

Being dimensionless, it is expressed as a number, e.g., 0.18 or 18%; its unit is 1.

There seems to be no standard notation in the English literature. The letter used here is normative in German literature (see Volumenkonzentration).

Related quantities

Several other quantities can be used to describe the composition of a mixture. These should not be called concentrations.[1]

Normality

Normality is defined as the molar concentration divided by an equivalence factor . Since the definition of the equivalence factor depends on context (which reaction is being studied), the

National Institute of Standards and Technology
discourage the use of normality.

Molality

The molality of a solution is defined as the amount of a constituent (in moles) divided by the mass of the solvent (not the mass of the solution):

The SI unit for molality is mol/kg.

Mole fraction

The mole fraction is defined as the amount of a constituent (in moles) divided by the total amount of all constituents in a mixture :

The SI unit is mol/mol. However, the deprecated parts-per notation is often used to describe small mole fractions.

Mole ratio

The mole ratio is defined as the amount of a constituent divided by the total amount of all other constituents in a mixture:

If is much smaller than , the mole ratio is almost identical to the mole fraction.

The SI unit is mol/mol. However, the deprecated parts-per notation is often used to describe small mole ratios.

Mass fraction

The mass fraction is the fraction of one substance with mass to the mass of the total mixture , defined as:

The SI unit is kg/kg. However, the deprecated parts-per notation is often used to describe small mass fractions.

Mass ratio

The mass ratio is defined as the mass of a constituent divided by the total mass of all other constituents in a mixture:

If is much smaller than , the mass ratio is almost identical to the mass fraction.

The SI unit is kg/kg. However, the deprecated parts-per notation is often used to describe small mass ratios.

Dependence on volume and temperature

Concentration depends on the variation of the volume of the solution with temperature, due mainly to thermal expansion.

Table of concentrations and related quantities

Concentration type Symbol Definition SI unit other unit(s)
mass concentration or kg/m3 g/100mL (= g/dL)
molar concentration mol/m3 M (= mol/L)
number concentration 1/m3 1/cm3
volume concentration m3/m3
Related quantities Symbol Definition SI unit other unit(s)
normality mol/m3 M (= mol/L)
molality mol/kg m
mole fraction mol/mol ppm, ppb, ppt
mole ratio mol/mol ppm, ppb, ppt
mass fraction kg/kg ppm, ppb, ppt
mass ratio kg/kg ppm, ppb, ppt
volume fraction m3/m3 ppm, ppb, ppt

See also

References

External links