Conotoxin

Source: Wikipedia, the free encyclopedia.
Alpha conotoxin precursor
SCOP2
1mii / SCOPe / SUPFAM
OPM superfamily148
OPM protein1akg
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Omega conotoxin
SCOP2
2cco / SCOPe / SUPFAM
OPM superfamily112
OPM protein1fyg
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

A conotoxin is one of a group of neurotoxic peptides isolated from the venom of the marine cone snail, genus Conus.

Conotoxins, which are peptides consisting of 10 to 30

disulfide bonds. Conotoxins have a variety of mechanisms of actions, most of which have not been determined. However, it appears that many of these peptides modulate the activity of ion channels.[1]
Over the last few decades conotoxins have been the subject of pharmacological interest.[2]

The LD50 of conotoxin ranges from 5-25 μg/kg.[3][4][5]

Hypervariability

Conotoxins are hypervariable even within the same species. They do not act within a body where they are produced (

mutations (like gene duplication and nonsynonymous substitution), and mutations remain in the genome longer, allowing more time for potentially beneficial novel functions to arise.[7] Variability in conotoxin components reduces the likelihood that prey organisms will develop resistance; thus cone snails are under constant selective pressure to maintain polymorphism in these genes because failing to evolve and adapt will lead to extinction (Red Queen hypothesis).[8]

Disulfide connectivities

Types of conotoxins also differ in the number and pattern of disulfide bonds.[9] The disulfide bonding network, as well as specific amino acids in inter-cysteine loops, provide the specificity of conotoxins.[10]

Types and biological activities

The number of conotoxins whose activities have been determined so far is five, and they are called the α(alpha)-, δ(delta)-, κ(kappa)-, μ(mu)-, and ω(omega)- types. Each of the five types of conotoxins attacks a different target:

Alpha

Alpha conotoxins have two types of cysteine arrangements,[18] and are competitive nicotinic acetylcholine receptor antagonists.

Delta, kappa, and omega

Omega, delta and kappa families of conotoxins have a knottin or inhibitor cystine knot scaffold. The knottin scaffold is a very special disulfide-through-disulfide knot, in which the III-VI disulfide bond crosses the macrocycle formed by two other disulfide bonds (I-IV and II-V) and the interconnecting backbone segments, where I-VI indicates the six cysteine residues starting from the N-terminus. The cysteine arrangements are the same for omega, delta and kappa families, even though omega conotoxins are calcium channel blockers, whereas delta conotoxins delay the inactivation of sodium channels, and kappa conotoxins are potassium channel blockers.[9]

Mu

Mu-conotoxin
SCOP2
1gib / SCOPe / SUPFAM
OPM superfamily112
OPM protein1ag7
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Mu-conotoxins have two types of cysteine arrangements, but the

voltage-dependent sodium channels of excitable tissues.[22]

Different subtypes of voltage-gated sodium channels are found in different tissues in mammals, e.g., in muscle and brain, and studies have been carried out to determine the sensitivity and specificity of the mu-conotoxins for the different isoforms.[23]

See also

References

This article incorporates text from the public domain Pfam and InterPro:

External links

  • Conotoxins at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  • Baldomero "Toto" Olivera's Short Talk. "Conus Peptides".
  • Kaas Q, Westermann JC, Halai R, Wang CK, Craik DJ. "ConoServer". Institute of Molecular Bioscience, The University of Queensland, Australia. Retrieved 2009-06-02. A database for conopeptide sequences and structures