Cyanamide

Source: Wikipedia, the free encyclopedia.
Cyanamide
Full skeletal formulas of cyanamide, both tautomers
Space-filling model of the cyanamide molecule, nitrile tautomer
Space-filling model of the cyanamide molecule, diimide tautomer
Names
IUPAC name
Cyanamide
Other names
Amidocyanogen, carbamonitrile, carbimide, carbodiimide, cyanoamine, cyanoazane, N-cyanoamine, cyanogenamide, cyanogen amide, cyanogen nitride, diiminomethane, hydrogen cyanamide, methanediimine
Identifiers
3D model (
JSmol
)
3DMet
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard
100.006.358 Edit this at Wikidata
EC Number
  • 206-992-3
784
KEGG
RTECS number
  • GS5950000
UNII
UN number 2811
  • InChI=1S/CH2N2/c2-1-3/h2H2 checkY
    Key: XZMCDFZZKTWFGF-UHFFFAOYSA-N checkY
  • InChI=1/CH2N2/c2-1-3/h2H2
    Key: XZMCDFZZKTWFGF-UHFFFAOYAW
Properties
CH2N2
Molar mass 42.040 g/mol
Appearance Crystalline solid
Density 1.28 g/cm3
Melting point 44 °C (111 °F; 317 K)
Boiling point 260 °C (500 °F; 533 K) (decomposes)
83 °C at 6.7 Pa
140 °C at 2.5 kPa
85 g/100 ml (25 °C)
Solubility in organic solvents soluble
log P -0.82
Acidity (pKa) 10.3[1]
Hazards
GHS labelling:
GHS05: CorrosiveGHS06: ToxicGHS07: Exclamation markGHS08: Health hazard
Danger
H301, H311, H314, H317, H351, H361, H373, H412
P201, P202, P260, P261, P264, P270, P272, P273, P280, P281, P301+P310, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P308+P313, P310, P312, P314, P321, P322, P330, P333+P313, P361, P363, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no code
2
1
2
Flash point 141 °C (286 °F; 414 K)
NIOSH (US health exposure limits):
PEL (Permissible)
none[2]
REL (Recommended)
TWA 2 mg/m3
IDLH
(Immediate danger)
N.D.[2]
Safety data sheet (SDS) ICSC 0424
Related compounds
Related compounds
Calcium cyanamide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Cyanamide is an

amino group. Derivatives of this compound are also referred to as cyanamides, the most common being calcium cyanamide (CaCN2).[3]

Tautomers and self-condensations

Containing both a nucleophilic and electrophilic site within the same molecule, cyanamide undergoes various reactions with itself. Cyanamide exists as two tautomers, one with the connectivity N≡C–NH2 and the other with the formula HN=C=NH ("carbodiimide" tautomer). The N≡C–NH2 form dominates, but in a few reactions (e.g. silylation) the diimide form appears to be important.[3]

Cyanamide dimerizes to give 2-cyanoguanidine (dicyandiamide). This dimerization is hindered or reversed by acids and is inhibited by low temperatures. The cyclic trimer is called melamine.[3]

Production

Cyanamide is produced by hydrolysis of

Frank-Caro process.[4]

CaCN2 + H2O + CO2 → CaCO3 + H2NCN

The conversion is conducted on slurries.

Reactions and uses

Cyanamide can be regarded as a functional single carbon fragment which can react as an electrophile or nucleophile. The main reaction exhibited by cyanamide involves additions of compounds containing an acidic proton. Water, hydrogen sulfide, and hydrogen selenide react with cyanamide to give urea, thiourea, and selenourea, respectively:

H2NCN + H2E → H2NC(E)NH2 (E = O, S, Se)

In this way, cyanamide behaves as a dehydration agent and thus can induce condensation reactions. Alcohols, thiols, and amines react analogously to give alkylisoureas, isothioureas, and

Amitrol and hexazinone. The hair-loss treatment minoxidil and the anthelmintics albendazole, flubendazole, and mebendazole feature 2-aminoimidazole substructures derived from cyanamide.[3] Cyanamide is also used in the synthesis of other pharmaceutical drugs including tirapazamine, etravirine, revaprazan
, and dasantafil.

The cyanamide

anion has the character of a pseudo chalcogen, cyanamide can therefore be regarded as analogue to water or hydrogen sulfide
.

A convenient method for the preparation of secondary amines which are not contaminated with primary or tertiary amines is the reaction of cyanamide with alkyl halides to N,N-dialkylcyanamides which can easily be hydrolyzed to dialkylamines and then decarboxylated.[5] Cyanamide adds itself in the presence of N-bromosuccinimide to olefinic double bonds. The addition product is converted by bases to N-Cyanaziridine,[6] cyclized in the presence of acids to imidazolines, which can be further reacted to vicinal diamines by alkaline cleavage.[7]

Cyanamide is also a versatile synthetic building block for heterocycles: it forms 2-aminobenzimidazole with 1,2-diaminobenzene[8] and it forms with the readily available cyclic enamine 4-(1-cyclohexenyl)morpholine[9] and with elemental sulfur a 2-aminothiazole in good yields.[10]

Sodium dicyanamide is available in good yield and high purity from cyanamid and cyanogen chloride,[11][12] which is suitable as an intermediate for the synthesis of active pharmaceutical ingredients.[13] A guanidino group is introduced by reaction of cyanamide with sarcosine In the industrial synthesis of creatine:[14].

reaction equation
reaction equation

This synthesis route mostly avoids problematic impurities like chloroacetic acid, iminodiacetic acid, or dihydrotriazine that occur in other routes. The physiological precursor guanidinoacetic is obtained analogously by reacting cyanamide with glycine.

Methods to stabilize cyanamidefmel make it available on an industrial scale. Due to the strong affinity towards self-condensation in alkaline media (see above) solutions of cyanamide are stabilized by the addition of 0.5 wt% of monosodium phosphate as buffer. Solid cyanamide is produced by careful evaporation of the solvent and subsequent addition of a hydrolysis-labile ester of formic acid. The ester absorbs traces of moisture (suppression of urea formation), neutralizes alkalinity (ammonia) and continually releases small amounts of formic acid.[15]

Agricultural use

Cyanamide, under the trade name Dormex, is a common agricultural

chilling units accumulated in the previous autumn and save the harvest that would otherwise be lost. It is particularly effective for woody plants such as blueberries, grapes, apples, peaches and kiwifruit. Most recently the product was approved for use on almonds and pistachios in the USA. Overdosage, high concentration and error in timing of application can damage the buds (especially of peach trees).[16]
Growers may avoid damage by applying 30 days prior to bud break according to the label.

A 50% aqueous solution of cyanamide is also used as a biocide (disinfectant) particularly in pig farming, because it effectively kills salmonella and shigella and fights flies in all stages of development.[17]

Environmental aspects

Cyanamide degrades via hydrolysis to urea, an excellent fertilizer.

Fungi, like Myrothecium verrucaria, accelerate this process utilizing the enzyme cyanamide hydratase.[18]

Cyanamide functional group

Cyanamide is the name for a functional group with the formula R1R2N−C≡N where R1 and R2 can be a variety of groups. These compounds are called cyanamides. One example is naphthylcyanamide, C10H7N(CH3)CN, which has been produced by the

tertiary amines to cyanamides using cyanogen bromide as reagent.[20] Some cyanamides where R1 and R2 are identical alkyl groups are prepared directly by alkylation of a salt of the parent cyanamide.[11]

Cyanamide in space

Due to its high permanent dipole moment (i.e., 4.32 ± 0.08 D),

Sgr B2 molecular cloud (T < 100 K) through its microwave transitions as the first known interstellar molecule containing the NCN frame.[22]

Safety

It is used as an

alcohol-deterrent drug in Canada, Europe, and Japan.[3]

Cyanamide has a modest toxicity in humans.

References

  1. ^ "Cyanamide_msds".
  2. ^ a b NIOSH Pocket Guide to Chemical Hazards. "#0160". National Institute for Occupational Safety and Health (NIOSH).
  3. ^ .
  4. .
  5. .
  6. .
  7. ..
  8. ..
  9. doi:10.15227/orgsyn.041.0065{{cite journal}}: CS1 maint: multiple names: authors list (link
    ).
  10. ..
  11. ^ .
  12. ^ Verfahren zur Herstellung von Natrium-Dicyanamid, veröffentlicht am 10. August 2000, Anmelder: SKW Trostberg AG.
  13. ^ "Sodium dicyanamide (Na-dicyanamide)". lonza.com. Archived from the original on 2013-05-23. Retrieved 2019-07-01.
  14. ^ Deutsche Offenlegungsschrift DE-OS 10 2006 016 227 A1, Offenlegungsdatum: 11. Oktober 2007, Anmelder: Degussa GmbH
  15. PMID 19505756
    .
  16. ^ Powell, A. (1999). "Action Program for Dormex Application on Peaches". Auburn University. Archived from the original on 2018-06-20.
  17. ^ "ALZOGUR®". AlzChem (in German). Retrieved 2019-07-01.
  18. .
  19. .
  20. .
  21. .
  22. ^ .

External links