DNMT1

Source: Wikipedia, the free encyclopedia.
DNMT1
Available structures
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001130823
NM_001379
NM_001318730
NM_001318731

NM_001199431
NM_001199432
NM_001199433
NM_010066
NM_001314011

RefSeq (protein)

NP_001124295
NP_001305659
NP_001305660
NP_001370

Location (UCSC)Chr 19: 10.13 – 10.23 MbChr 9: 20.82 – 20.87 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

DNA (cytosine-5)-methyltransferase 1 (Dnmt1) is an enzyme that catalyzes the transfer of methyl groups to specific CpG sites in DNA, a process called DNA methylation. In humans, it is encoded by the DNMT1 gene.[5] Dnmt1 forms part of the family of DNA methyltransferase enzymes, which consists primarily of DNMT1, DNMT3A, and DNMT3B.

Function

This enzyme is responsible for maintaining DNA methylation, which ensures the fidelity of this

epigenetic patterns across cell divisions. In line with this role, it has a strong preference towards methylating CpGs on hemimethylated DNA.[6] However, DNMT1 can catalyze de novo DNA methylation in specific genomic contexts, including transposable elements and paternal imprint control regions.[7][8] Aberrant methylation patterns are associated with certain human tumors and developmental abnormalities.[9][10]

See also

Interactions

DNMT1 has been shown to

interact
with UHRF1,:

DNMT1 is highly transcribed during the S phase of the cell cycle when it is required for methylation of the newly generated hemimethylated sites on daughter DNA strands.[18] Its interaction with PCNA and UHRF1 has been implicated in localizing it to the replication fork.[19] The direct co-operation between DNMT1 and G9a coordinates DNA and H3K9 methylation during cell division.[17] This chromatin methylation is necessary for stable repression of gene expression during mammalian development.

Model organisms

Knockout experiments have shown that this enzyme is responsible for the bulk of methylation in mouse cells, and it is essential for embryonic development.[20] It has also been shown that a lack of both maternal and zygotic Dnmt1 results in complete demethylation of imprinted genes in blastocysts.[21]

Clinical significance

DNMT1 plays a critical role in Hematopoietic stem cell (HSC) maintenance. HSCs with reduced DNMT1 fail to self-renew efficiently post-transplantation.[22] It has also been shown to be critical for other stem cell types such as Intestinal stem cells (ISCs) and Mammary stem cells (MaSCs). Conditional deletion of DNMT1 results in overall intestinal hypomethylation, crypt expansion and altered differentiation timing of ISCs, and proliferation and maintenance of MaSCs.[23]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000130816Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000004099Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 1594447
    .
  6. .
  7. .
  8. .
  9. .
  10. ^ "Entrez Gene: DNMT1 DNA (cytosine-5-)-methyltransferase 1".
  11. ^
    S2CID 26149386
    .
  12. ^ .
  13. .
  14. .
  15. .
  16. .
  17. ^ .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .

Further reading

External links

This page is based on the copyrighted Wikipedia article: DNMT1. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy